Скважинный электромагнитный трактор Российский патент 2022 года по МПК E21B23/14 H02P25/62 

Описание патента на изобретение RU2766073C1

Изобретение относится к нефтепромысловой геофизике и нефтяному делу.

Известно, что скважинный электромагнитный трактор должен иметь возможность проникать на значительные расстояния в горизонтальные участки нефтяных скважин (обсаженных или необсаженных обсадными колоннами) через насосно-компрессорную трубу, опущенную до начала горизонтального участка скважины.

Это значит, что наружный диаметр трактора должен быть не более 60 мм, а общая длина не превышать Lобщ=9-10 м.

При этом трактор должен тащить за собой геофизический кабель питания и геофизический прибор, выполняющий регистрацию характеристик скважины или окружающего ее горного массива или выполняющий операции по очистке скважины или ловильные операции по отношению к застрявшим в скважине элементам.

Известно техническое решение этой задачи, выполненное фирмой WellTractor (https://welltec.com/ru/products-landing-page/well-tractor/coiled-tubing-well-tractor)

В нем движение трактора по горизонтальному участку скважины осуществляют путем создания статических тяговых усилий вращающимися оребренными шестернями.

Однако, в силу ограниченности радиальных размеров оребренных выдвигающимися на рычагах - коромыслах из тела трактора до упора о стенки скважины шестерен и плеч рычагов-коромысел, затруднительно осуществить значительную статическую силу для продвижения механизма, преодолевающего сопротивление трения и тянущего за собой кабель.

В связи с этим, данные машины, основанные на механизмах, создающих статические тянущие усилия, недостаточные для преодоления сил сопротивления, не могут проникать в горизонтальные участки скважины на значительную глубину - до 4-5 км.

Наибольшим преимуществом в создании значительных тяговых усилий в ограниченных объемах обладают импульсные ударные машины (пневматические, гидравлические и электрические).

При этом совершенно очевидно, что в данном случае могут быть использованы только электрические машины в связи с возможностью канализации энергии на большие расстояния только по электрическому кабелю.

Известна электромагнитная ударная горизонтальная машина для проходки горизонтальных скважин в грунте, включающая сплошной корпус, связанную с ним наковальню, электромагнитные катушки, расположенные внутри корпуса и объединенные в парные группы, боек, состоящий из основных ферромагнитных частей и соединительных вставок. (А.С. №1180454).

Причем диаметр основных частей бойка равен диаметру внутреннему диаметру катушек, а диаметр соединительных вставок, меньше диаметра основных частей.

При этом на каждую основную ферромагнитную часть бойка синхронно и поочередно воздействует своя пара катушек, обеспечивая бойку возвратно-поступательное движение.

При этом боек под действием одних катушек из каждой группы разгоняют в одном направлении и наносят удар по наковальне, связанной корпусом, продвигая его вперед в направлении движения машины, а под действием другой пары катушек отводят в обратном направлении для подготовки к совершению последующего удара.

Таким образом, в каждый момент времени на боек одновременно и в одинаковом направлении действуют катушки из одной группы.

Соединительные вставки в бойке предназначены для того, чтобы можно было разнести группы катушек между собой, чтобы каждая катушка в группе одновременно воздействовала только на свою ферромагнитную часть бойка в одинаковом направлении и не тормозила его, воздействуя на другие его ферромагнитные части.

Недостатками известной конструкции являются следующее:

- энергию разгона бойка в направлении перемещения машины по скважине обеспечивают только половиной всех катушек;

- выполнение соединительных ставок ферромагнитными снижает тяговые силы катушек.

Оба этих фактора снижают удельную ударную мощность машины. Известная конструкция позволяет наносить удары бойком только по одной наковальне, связанной с корпусом, а это значит, что все катушки должны находиться в едином корпусе.

А это не позволяет выполнить его гибким, чтобы проходить изгибы скважины при переходе ее в горизонтальный участок.

Техническим результатом, решаемым предлагаемым изобретением, является создание устройства, позволяющего увеличить его ударную мощность при обеспечении гибкости его корпуса.

Технический результат в предлагаемом изобретение достигают созданием скважинного электромагнитного трактора, включающего корпус, связанную с ним наковальню, электромагнитные катушки, расположенные внутри корпуса, боек, состоящий из ферромагнитных частей и соединительных вставок, в котором, согласно изобретению, корпус выполнен сборным из отдельных корпусов, связанных между собой разделительными звеньями с шарнирным узлом, причем в каждом корпусе размещена своя электромагнитная катушка, снабженная двумя полюсами - передним и задним, жестко связанными с корпусом и между которыми расположена диамагнитная направляющая, предназначенная для перемещения ферромагнитных частей бойка каждой катушки и имеющая контакт с соответствующей ферромагнитной частью бойка, причем ферромагнитные части бойка разделены друг от друга немагнитными вставками, жестко соединяющими ферромагнитные части между собой, а на немагнитной вставке в месте ее соприкосновения с ферромагнитной части выполнен буртик, обеспечивающий упор в конусное сужение на передних полюсах.

Снабжение корпуса скважинного электромагнитного трактора гибкими шарнирными узлами, позволяет обеспечить возможность прохождения искривлений ствола скважины при переходе к ее горизонтальному участку. Это стало возможным за счет распределения энергии удара по всему корпусу вместо ее приложения в одной точке.

С целью обеспечения гибкости корпуса скважинного трактора, необходимой для преодоления участков искривления НКТ и обсадной колонны, корпус трактора выполняют сборным, состоящим из соединенных корпусов отдельных катушек

Сущность предлагаемого изобретения поясняется нижеследующим описанием конструкции и чертежом, на котором показан продольный разрез предлагаемого скважинного электромагнитного трактора.

Скважинный электромагнитный трактор включает корпус, выполнен сборным в виде набора отдельных корпусов 1, связанную с ним наковальню 2, электромагнитные катушки 3, расположенные внутри корпуса, боек, состоящий из ферромагнитных частей 4 и немагнитных вставок 5.

Причем в каждом корпусе 1 размещена своя электромагнитная катушка 3, снабженная двумя полюсами - передним 6 и задним 7, жестко связанными с корпусом и между которыми расположена диамагнитная направляющая 8, предназначенная для перемещения ферромагнитных частей 4 бойка каждой катушки 3 и имеющая контакт с соответствующей ферромагнитной частью 4 бойка.

Ферромагнитные части 4 бойка разделены друг от друга немагнитными вставками 5, жестко соединяющими ферромагнитные части 4 между собой, а на немагнитной вставке 5 в месте ее соприкосновения с ферромагнитной части 4 выполнен буртик 9, обеспечивающий упор в конусное сужение на передних полюсах 6.

Каждая электромагнитная катушка воздействует на свою ферромагнитную часть бойка 4, которые по длине равны длине катушек, или немного больше их.

Число ферромагнитных частей 4 бойка равно числу катушек 3.

Диаметр немагнитных вставок 5 меньше в 1,5…2 раза диаметра ферромагнитных частей 4 бойка.

Электромагнитные катушки 3 размещены в корпусах 1 и раздвинуты друг от друга разделительными звеньями 10, равными по длине немагнитным вставкам 5.

Соединение корпусов 1 катушек выполняют с помощью разделительных звеньев 10, внутри каждого из которых или на некоторых из них устанавливают шарнирный узел 11.

Количество шарнирных узлов 11 определяют кривизной перехода к горизонтальному участку скважины.

Каждая электромагнитная катушка снабжена двумя полюсами - передним 6 и задним 7, жестко связанными с корпусами 1 катушек.

Передние полюса 6 размещены со стороны рабочего зазора 5 электромагнитов, а задние 7 - со стороны паразитного зазора.

Через передние полюса 6 (кроме переднего полюса 6 на первой катушке 3 проходят немагнитные вставки 5 бойка, но не могут проходить его ферромагнитные части 4.

Это обеспечивают следующим образом.

Передние полюса 6 имеют конусные сужения, которые по проходному диаметру меньше, чем диаметр направляющей 8 внутри катушек, по которой перемещают ферромагнитные части 4 бойка.

Через это конусное сужение свободно проходят немагнитные вставки 5 бойка, которые по диаметру меньше ферромагнитных частей 4.

На переходе от ферромагнитной части к немагнитной вставке имеется буртик 9, который упирается в конусное сужение на полюсах 6.

Этот переходной буртик не позволяет ферромагнитным частям бойка пройти через передние полюса катушек.

При движении бойка под действием всех катушек одновременно этими буртиками 9 боек наносят удар по передним полюсам 6, который передается корпусу 1 скважинного трактора.

Между полюсами 6, 7 катушек 3 расположены диамагнитные направляющие 8, на которые намотаны катушки.

По направляющим 8 перемещают ферромагнитные части 4 бойка каждой катушки 3.

Для того, чтобы не было заклинивания бойка при движении по направляющим, их длина Lнапр должна быть больше длины катушек Lк в 1,3-1,5 раза Lнапр=(1,3-1,5)L к

Работа предлагаемого скважинного трактора происходит следующим образом.

Машину на кабеле опускают в скважину через НКТ, проходят участок кривизны обсадной колонны и за счет шарнирных узлов 11 в разделительных звеньях 10 корпуса и доходят до горизонтальной части скважины.

После этого происходит включение машины.

При этом все электромагнитные катушки 3 включают одновременно и действуют на свои ферромагнитные части 4 бойка, создавая электромагнитную силу Fэ, действующую на боек.

где N- число катушек.

Эта сила равна сумме электромагнитных сил катушек Fэi. Под действием этой силы боек разгоняется, проходя путь равный зазору катушек δ и приобретает энергию Ауд. Ауд=Fэ⋅8.

С этой энергией боек наносит удар по наковальне 2 и передним полюсам 6, жестко связанным с корпусом трактора.

В результате этого на корпус скважинного трактора действует импульс силы ΔF, перемещающий его в направлении разгона бойка.

При этом машина перемещается по скважине и тянет за собой питающий кабель.

После удара катушки отключают, и боек в обратном направлении перемещают пружиной 12, связанной с крышкой 13. Питание катушек обеспечивают по кабелю 14.

Таким образом, в отличие от прототипа, в предлагаемом техническом решении скважинного трактора энергия удара бойка обеспечивают действием всех N одновременно действующих на боек электромагнитных катушек, что повышает ударный импульс машины, а значит и эффективность его перемещения по скважине.

Похожие патенты RU2766073C1

название год авторы номер документа
Устройство ударного действия для образования скважины в грунте 1983
  • Петунин Юрий Петрович
  • Евдокимов Валерий Александрович
  • Ивашин Виктор Васильевич
  • Милорадов Игорь Александрович
  • Шишкин Вениамин Николаевич
  • Кузнецов Василий Иванович
  • Черепанов Геннадий Васильевич
  • Дудко Эдуард Иванович
SU1116137A1
ЭЛЕКТРОМАГНИТНЫЙ МОЛОТ С ПРИВОДОМ ОТ ЛИНЕЙНОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ 2016
  • Миханошин Виктор Викторович
  • Горшков Андрей Алексеевич
RU2630026C1
Электромагнитный молот 1982
  • Ряшенцев Николай Павлович
  • Симонов Борис Ферапонтович
  • Погарский Юрий Валентинович
  • Юрин Эдуард Федорович
SU1051256A1
СКВАЖИННЫЙ СЕЙСМОИСТОЧНИК 2017
  • Симонов Борис Ферапонтович
  • Погарский Юрий Валентинович
  • Кордубайло Алексей Олегович
  • Лебедев Юрий Альфредович
RU2642199C1
УСТРОЙСТВО для ОБРАЗОВАНИЯ СКВАЖИНЫ В ГРУНТЕ 1973
SU397609A1
Электродвигатель возвратно-поступательного движения 1989
  • Дусалиев Каиргали Мукашевич
SU1721740A1
Импульсный источник сейсмических сигналов 1990
  • Ряшенцев Николай Павлович
  • Бритков Николай Александрович
  • Брулев Юрий Васильевич
  • Щерба Юрий Григорьевич
  • Терещенко Алексей Иванович
  • Малахов Алексей Петрович
SU1778729A1
Скважинный сейсмоисточник 2020
  • Симонов Борис Ферапонтович
  • Абрамов Николай Сергеевич
  • Вандышев Михаил Лонгинович
  • Кордубайло Алексей Олегович
  • Пронькин Юрий Андреевич
RU2753805C1
Ударный узел электромагнитного перфоратора 1989
  • Кораблев Геннадий Александрович
  • Иванов Виктор Иванович
  • Ляшков Владимир Иванович
  • Лихатков Александр Иванович
SU1707194A1
Скважинный сейсмоисточник 2020
  • Симонов Борис Ферапонтович
  • Абрамов Николай Сергеевич
  • Вандышев Михаил Лонгинович
  • Кордубайло Алексей Олегович
  • Пронькин Юрий Андреевич
RU2753806C1

Иллюстрации к изобретению RU 2 766 073 C1

Реферат патента 2022 года Скважинный электромагнитный трактор

Заявлен скважинный электромагнитный трактор. Техническим результатом является создание устройства, позволяющего увеличить его ударную мощность при обеспечении гибкости его корпуса. Скважинный электромагнитный трактор включает связанную с ним наковальню, электромагнитные катушки, расположенные внутри корпуса и объединенные в парные группы. Боек, состоящий из ферромагнитных частей и соединительных вставок. Корпус выполнен сборным из отдельных корпусов, связанных между собой разделительными звеньями с шарнирным узлом. В каждом корпусе размещена своя электромагнитная катушка, снабженная двумя полюсами - передним и задним, жестко связанными с корпусом и между которыми расположена диамагнитная направляющая, предназначенная для перемещения ферромагнитных частей бойка каждой катушки и имеющая контакт с соответствующей ферромагнитной частью бойка. Ферромагнитные части бойка разделены друг от друга немагнитными вставками, жестко соединяющими ферромагнитные части между собой. На немагнитной вставке в месте ее соприкосновения с ферромагнитной частью выполнен буртик, обеспечивающий упор в конусное сужение на передних полюсах. 1 ил.

Формула изобретения RU 2 766 073 C1

Скважинный электромагнитный трактор, включающий корпус, связанную с ним наковальню, электромагнитные катушки, расположенные внутри корпуса и объединенные в парные группы, боек, состоящий из ферромагнитных частей и соединительных вставок, отличающийся тем, что корпус выполнен сборным из отдельных корпусов, связанных между собой разделительными звеньями с шарнирным узлом, причем в каждом корпусе размещена своя электромагнитная катушка, снабженная двумя полюсами - передним и задним, жестко связанными с корпусом и между которыми расположена диамагнитная направляющая, предназначенная для перемещения ферромагнитных частей бойка каждой катушки и имеющая контакт с соответствующей ферромагнитной частью бойка, причем ферромагнитные части бойка разделены друг от друга немагнитными вставками, жестко соединяющими ферромагнитные части между собой, а на немагнитной вставке в месте ее соприкосновения с ферромагнитной частью выполнен буртик, обеспечивающий упор в конусное сужение на передних полюсах.

Документы, цитированные в отчете о поиске Патент 2022 года RU2766073C1

Электромагнитный привод ударного действия 1986
  • Ляшков Владимир Иванович
  • Джансугуров Саят Ильясович
  • Козлов Александр Алексеевич
  • Калашников Александр Андреевич
  • Хачатурян Сергей Хачатурович
  • Башкиров Николай Александрович
SU1394388A1
Электромагнитный привод 1983
  • Ляшков Владимир Иванович
  • Джансугуров Саят Ильясович
  • Козлов Александр Алексеевич
  • Хачатурян Сергей Хачатурович
  • Пикулькин Анатолий Иванович
SU1086539A1
ЭЛЕКТРОМАГНИТНЫЙ МОЛОТ С ПРИВОДОМ ОТ ЛИНЕЙНОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ 2016
  • Миханошин Виктор Викторович
  • Горшков Андрей Алексеевич
RU2630026C1
СПОСОБ СОЗДАНИЯ СИЛЫ ТЯГИ В СКВАЖИНЕ И СКВАЖИННЫЙ ТРАКТОР (ВАРИАНТЫ) 2007
  • Князев Александр Рафаилович
RU2354801C2
ЭЛЕКТРОМАГНИТНАЯ МАШИНА УДАРНОГО ДЕЙСТВИЯ 1996
  • Угаров Г.Г.
  • Нейман В.Ю.
RU2111847C1
Электромагнитное устройство для образования скважин в грунте 1984
  • Голубятников Владимир Трофимович
SU1180454A1
РАБОЧИЙ МОДУЛЬ ДЛЯ ПРОВЕДЕНИЯ ПОДВОДНЫХ ВНУТРИСКВАЖИННЫХ РАБОТ 2011
  • Халлунбек Йерген
  • Хейзел Пол
RU2566880C2
US 9624743 B2, 18.04.2017.

RU 2 766 073 C1

Авторы

Симонов Борис Ферапонтович

Абрамов Николай Сергеевич

Вандышев Михаил Лонгинович

Кордубайло Алексей Олегович

Даты

2022-02-07Публикация

2021-07-07Подача