ТОПЛИВНАЯ ФОРСУНКА Российский патент 2022 года по МПК F02M47/00 F02M61/10 F02M61/20 

Описание патента на изобретение RU2769207C2

Область техники, к которой относится изобретение

Изобретение относится к топливной форсунке.

Уровень техники

Топливная форсунка (10) является важным компонентом топливной системы для впрыскивания топлива в камеру сгорания двигателя. На фиг. 1 показана в разрезе топливная форсунка (10), известная из уровня техники. Топливная форсунка (10) содержит корпус (12) форсунки, образующий ее наружный кожух. Топливная форсунка (10) также содержит распыливающий узел (14), закрепленный на корпусе (12) форсунки. Распыливающий узел (14) содержит распылитель (14а) и иглу (14b). Игла (14b) расположена внутри распылителя (14а). Распылитель (14а) имеет одно или несколько сопловых отверстий для распыливания топлива в форме мелкодисперсного факела. В корпусе (12) форсунки расположена пружина (16), обеспечивающая открытие и закрытие сопловых отверстий за счет перемещения иглы (14b) в распылителе (14а) между ее открывающим и закрывающим положениями. Топливная форсунка (10) имеет входной канал (18), по которому топливо поступает в карман распылителя (14а). По мере нарастания давления топлива в кармане распылителя происходит подъем иглы (14b).

В публикации US 5769319 раскрыта закрытая топливная форсунка, содержащая корпус с полостью, включающей в себя карман распылителя и сопловое отверстие, сообщающееся с одним концом карман распылителя для выпуска топлива в камеру сгорания, запорный элемент, расположенный в кармане распылителя вблизи соплового отверстия, и средства регулирования расхода, обеспечивающие варьирование расхода топлива через сопловое отверстие и включающие в себя дроссельный проход, образованный в запорном элементе, выполненном в виде иглы, для ограничения потока топлива, поступающего в карман распылителя, таким образом, чтобы варьировать темп нарастания давления топлива в кармане распылителя.

Краткое описание чертежей

Фиг. 1 - вид в разрезе топливной форсунки, известной из уровня техники.

Фиг. 2 - вид в разрезе предлагаемой в изобретении топливной форсунки в одном варианте ее выполнения.

Фиг. 3 - график, показывающий количество впрыскиваемого топлива как функцию оборотов двигателя для уровня техники.

Фиг. 4 - график, показывающий количество впрыскиваемого топлива как функцию оборотов двигателя в одном варианте осуществления настоящего изобретения.

Подробное описание вариантов осуществления изобретения

На фиг. 2 в разрезе изображена предлагаемая в изобретении топливная форсунка (100) в одном варианте ее выполнения.

Топливная форсунка (100) содержит корпус (102) форсунки и распыливающий узел (104), закрепленный на корпусе (102) форсунки и имеющий одно или несколько сопловых отверстий для впрыскивания топлива в камеру сгорания. Топливная форсунка (100) отличается тем, что в корпусе (102) форсунки расположена пружина (106), имеющая переменный диаметр витков и переменный шаг для регулирования количества топлива, впрыскиваемого в камеру сгорания, в зависимости от режима работы двигателя.

Конструкция топливной форсунки (100) подробнее рассматривается ниже.

Корпус (102) топливной форсунки (100) образует ее наружный кожух. Корпус (102) форсунки имеет полость (102а), в которой расположены другие компоненты топливной форсунки (100), рассматриваемые ниже.

Топливная форсунка (100) также содержит распыливающий узел (104), закрепленный на корпусе (102) форсунки. Распыливающий узел (104) содержит распылитель (104а) с карманом (104b) распылителя и иглу (104 с). Игла (104 с) расположена в кармане (104b) распылителя. Распылитель (104а) имеет одно или несколько сопловых отверстий, сообщающихся с камерой сгорания для впрыскивания в камеру сгорания топлива, находящегося в кармане (104b) распылителя. Игла (104 с) установлена в кармане (104b) распылителя с возможностью перемещения таким образом, чтобы открывать и закрывать сопловые отверстия.

В корпусе (102) форсунки расположен входной канал (108) для впуска в карман (104b) распылителя топлива, поступающего под высоким давлением по напорному трубопроводу из топливного насоса.

Распыливающий узел (104) имеет на своей внутренней поверхности резьбу, посредством которой распыливающий узел (104) закрепляется на корпусе (102) форсунки по типу штуцерного соединения.

Топливная форсунка (100) отличается пружиной (106), расположенной в ее корпусе (102). То есть пружина (106) расположена в полости (102а) корпуса (102) форсунки. Пружина (106) обеспечивает возвратно-поступательное движение иглы (104 с) в кармане (104b) распылителя между открывающим и закрывающим положениями иглы в процессе впрыска топлива. Кроме того, пружина (106) предварительно нагружается при навинчивании распыливающего узла (104) на корпус (102) форсунки.

В одном варианте осуществления изобретения особенностью пружины (106) является то, что она имеет переменный диаметр витков, постоянный диаметр проволоки и постоянный шаг. Диаметр витка это размер витка в поперечнике пружины. Число имеющихся у пружины витков определяется исходя из таких факторов, как ход иглы, потребное количество впрыскиваемого топлива и жесткость пружины. Переменный диаметр витков означает то, что один или несколько витков пружины отличается диаметром от других витков пружины. В этом варианте осуществления изобретения диаметр витков, находящихся вверху и внизу пружины (106), меньше диаметра витков, находящихся ближе к середине пружины (106). Следует отметить, что в этом варианте осуществления изобретения диаметр витков пружины (106) изменяется в диапазоне от 3,5 до 7,0 мм. Диаметр проволоки - это размер проволоки, из которой изготовлена пружина (106), в поперечнике проволоки. Шаг - это расстояние между любыми двумя соседними витками пружины (106). Постоянный шаг означает то, что расстояние между соседними витками одинаково.

В другом варианте осуществления изобретения особенностью пружины (106) является то, что она имеет переменный шаг, постоянный диаметр витков и постоянный диаметр проволоки. Переменный шаг означает то, что расстояния между различными соседними витками отличаются друг от друга, а постоянный диаметр витков означает то, что диаметр всех витков пружины одинаков. В этом варианте осуществления изобретения шаг пружины (106) вверху и внизу меньше шага пружины (106) ближе к ее середине. Значение шага пружины в этом варианте осуществления изобретения изменяется в диапазоне от 1 до 2 мм.

Вместе с тем, значение шага пружины должно распределяться по виткам таким образом, чтобы полная длина пружины (106) оставалась примерно равной 27,2 мм.

В еще одном варианте осуществления изобретения особенностью пружины (106) является то, что она имеет как переменный диаметр витков, так и переменный шаг при постоянном диаметре проволоки. Следует отметить, что во всех трех вариантах осуществления изобретения диаметр проволоки постоянен.

Топливная форсунка (100) также содержит тарелку (110), опирающуюся на дистанционную деталь (112) и расположенную в полости (102а) корпуса (102) форсунки. Тарелка (110) также используется для удерживания пружины (106) на одном конце и для передачи пружине (106) движения иглы (104 с). Дистанционная деталь (112) расположена между корпусом (102) форсунки и распыливающий узлом. Дистанционная деталь (112) используется для установки максимального подъема, т.е. хода, иглы (104 с).

Работа топливной форсунки (100) поясняется ниже.

Топливный насос повышает давление топлива, поступающего из топливного бака. Находящееся под давлением топливо направляется в топливную форсунку (100). Находящееся под давлением топливо поступает в карман (104b) распылителя по входному каналу (108). Таким образом, находящееся под давлением топливо накапливается в кармане (104b) распылителя. Накапливаясь в кармане (104b) распылителя, находящееся под давлением топливо создает силовое воздействие на иглу (104 с). В результате игла (104 с) стремится создать сжимающую силу, направленную против силы упругости пружины. Как только сжимающая сила, создаваемая давлением топлива, превысит силу упругости предварительно нагруженной пружины, пружина (106) сожмется и игла (104 с) поднимется, открыв сопловые отверстия, примыкающие к карману (104b) распылителя. При открытии сопловых отверстий находящееся под давлением топливо впрыскивается в камеру сгорания.

При подъеме иглы (104 с), ввиду наличия дистанционной детали (112), расположенной между корпусом (102) форсунки и распылителем (104а), игла (104 с) может перемещаться до тех пор, пока не достигнет нижней поверхности дистанционной детали (112). Это позволяет регулировать ход иглы. Подъем иглы - это расстояние, проходимое иглой (104 с) из закрывающего положения в открывающее положение. На фиг. 2 игла показана в закрывающем положении.

Максимальный подъем иглы (104 с) достигается при упоре верхней поверхности иглы (104 с) в нижнюю поверхность дистанционной детали (112). Внутри дистанционной детали (112) движется направляющая (104d) иглы.

Когда игла (104 с) поднимается, преодолевая силу упругости пружины, пружина (106) начинает сжиматься. Когда пружина (106) имеет переменный диаметр витков и переменный шаг, скорость, с которой игла (104 с) поднимается, преодолевая силу упругости пружины, для определенного режима работы двигателя изменяется. Эта скорость также называется скоростью подъема иглы (104 с). Такое изменение скорости подъема иглы (104 с) приводит к изменению количества топлива, впрыскиваемого в камеру сгорания. Для определенного режима работы двигателя потребное количество топлива известно из характеристики, хранящейся в памяти блока управления. Следовательно, расстояние, на которое игла (104 с) должна подняться, чтобы топливная форсунка (100) впрыснула требуемое количество топлива, также известно. Следует отметить, что применение пружины (106) обеспечивает изменение скорости, с которой игла (104 с) поднимается, преодолевая силу упругости пружины, для этого определенного режима работы двигателя, однако высота подъема иглы (104 с) остается для этого определенного режима работы двигателя неизменной. Иначе говоря, благодаря применению пружины (106) изменяется время, за которое игла (104 с) должна подняться на эту определенную высоту.

Таким образом, пружина (106), имеющая переменный диаметр витков и переменный шаг, обеспечивает переменную скорость подъема иглы (104 с) против силы упругости пружины. Такая переменная скорость подъема иглы обусловливает изменение количества топлива, впрыскиваемого в камеру сгорания, по сравнению с применением известной из уровня техники пружины, имеющей постоянный диаметр витков и постоянный шаг. Такое изменение количества впрыскиваемого топлива приводит к уменьшению вредных выбросов и снижению расхода топлива для определенного режима работы двигателя. Изменение количества топлива, впрыскиваемого в камеру сгорания, подробнее поясняется со ссылкой на фиг. 3.

На фиг. 3 и 4 приведены графики, показывающие количество впрыскиваемого топлива как функцию оборотов двигателя.

На фиг. 3 представлена известная из уровня техники зависимость количества впрыскиваемого топлива от оборотов двигателя. В этом случае топливная форсунка (10) содержит пружину (16), имеющую постоянный диаметр витков, постоянный шаг и постоянный диаметр проволоки. На графике, показанном на фиг. 3, горизонтальная ось представляет подъем иглы топливной форсунки (10), а вертикальная ось представляет количество топлива, впрыскиваемого в камеру сгорания.

Как отмечено выше, игла (14b) установлена с возможностью перемещения между закрывающим и открывающим положениями. Подъем иглы определяется как высота, на которую игла (14b) поднимается относительно ее закрывающего положения.

Количество топлива, впрыскиваемого в камеру сгорания, выражается в кубических сантиметрах за 30 секунд, а подъем иглы выражается в миллиметрах.

На графике, показанном на фиг. 3, наклонная прямая (302) представляет линейную зависимость между подъемом иглы и количеством топлива, впрыскиваемого в камеру сгорания. То есть, если игла поднимается высоко, то и количество топлива, впрыскиваемого в камеру сгорания, будет большим.

График, показанный на фиг. 4, представляет отношение между количеством впрыскиваемого топлива и подъемом иглы для топливной форсунки (100) с пружиной (106), имеющей переменный диаметр витков и/или переменный шаг для регулирования количества топлива, впрыскиваемого в камеру сгорания, в зависимости от режима работы двигателя. Горизонтальная ось представляет подъем иглы, выражаемый в миллиметрах. Вертикальная ось представляет количество топлива, впрыскиваемого в камеру сгорания, выражаемое в кубических сантиметрах за 30 секунд.

График (402) представляет зависимость между количеством впрыскиваемого топлива и подъемом иглы. На графике (402) зависимость между количеством впрыскиваемого топлива и подъемом иглы является нелинейной. Такая нелинейность обеспечивается благодаря переменной скорости подъема иглы для определенного режима работы двигателя (обороты и крутящий момент). Это достигается применением пружины (106), имеющей переменный диаметр витков, либо переменный шаг, либо как переменный диаметр витков, так переменный шаг. Скорость подъема иглы является переменной благодаря тому, что пружина (106) имеет переменный диаметр витков и переменный шаг. Переменная скорость подъема иглы обеспечивает уменьшение количества впрыскиваемого топлива. Такое уменьшение количества впрыскиваемого топлива приводит к уменьшению вредных выбросов и снижению расхода топлива. Таким образом, для определенного режима работы двигателя заранее задаются подъем иглы и количество топлива, впрыскиваемого при этом подъеме. Благодаря применению пружины (106), имеющей переменный диаметр витков и переменный шаг, обеспечивается переменная скорость подъема иглы, что изменяет количество топлива, впрыскиваемого в камеру сгорания. Однако высота, до которой поднимается игла (104 с), т.е. подъем иглы, остается для этого определенного режима работы двигателя неизменной. Иначе говоря, для этого определенного режима работы двигателя изменяется скорость, с которой поднимается игла (104 с).

Таким образом, в настоящем изобретении предлагается топливная форсунка (100), отличающаяся наличием пружины (106), имеющей переменный диаметр витков и переменный шаг. Применение такой пружины (106) обеспечивает изменение скорости подъема иглы для определенного режима работы двигателя. Такая переменная скорость подъема иглы обеспечивает изменение количества топлива, впрыскиваемого в камеру сгорания. Также за счет обеспечения переменной скорости подъема иглы уменьшается количество топлива, впрыскиваемого в камеру сгорания. Это позволяет избежать впрыскивания излишнего топлива, приводящего к увеличению вредных выбросов и увеличению расхода топлива. Таким образом, предлагаемая в изобретении топливная форсунка (100) обеспечивает уменьшение вредных выбросов и снижение расхода топлива.

Рассмотренные выше в описании варианты осуществления изобретения носят исключительно иллюстративный характер и не ограничивают возможностей осуществления изобретения. Так, множество вариантов выбора существует в отношении типа корпуса форсунки и типа распыливающего узла. Объем охраны изобретения определяется только его формулой.

Похожие патенты RU2769207C2

название год авторы номер документа
ФОРСУНКА ДЛЯ ВПРЫСКИВАНИЯ ТОПЛИВА МЕТОДОМ СОУДАРЕНИЯ СТРУЙ ТОПЛИВА И ВОЗДУХА 1998
  • Заяц Ю.А.
  • Писарчук А.В.
  • Шапран В.Н.
RU2138674C1
РАСПЫЛИТЕЛЬ ФОРСУНКИ ДЛЯ ВПРЫСКИВАНИЯ ТОПЛИВА МЕТОДОМ СОУДАРЯЮЩИХСЯ СТРУЙ 1997
  • Заяц Ю.А.
  • Свиридов Н.В.
  • Гришин А.С.
RU2135816C1
РАСПЫЛИТЕЛЬ ФОРСУНКИ ДЛЯ ВПРЫСКИВАНИЯ ТОПЛИВА МЕТОДОМ СОУДАРЯЮЩИХСЯ СТРУЙ 1998
  • Диденко А.А.
  • Заяц Ю.А.
RU2136948C1
СИСТЕМА ПОДАЧИ ТОПЛИВА В КАМЕРУ СГОРАНИЯ ГАЗОДИЗЕЛЯ 2014
  • Гаваза Александр Николаевич
  • Каткова Лилия Евгеньевна
  • Сажин Антон Юрьевич
  • Шарыгин Лев Николаевич
RU2578770C1
ФОРСУНКА МНОГОТОПЛИВНОГО ДИЗЕЛЯ 2003
  • Мальчук В.И.
RU2240439C1
ТОПЛИВНАЯ ФОРСУНКА 2010
  • Михаэль Лойкарт
  • Катя Гроте
  • Вильхельм Крист
  • Герхард Зюндерхауф
RU2541367C2
ТОПЛИВНАЯ ФОРСУНКА ДЛЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 1996
  • Виллке Клеменс
  • Францке Клаус
  • Альбродт Хартмут
  • Белцнер Норберт
RU2151905C1
Форсунка для подачи топлива в дизельный двигатель 1990
  • Патрахальцев Николай Николаевич
  • Девянин Сергей Николаевич
  • Басистый Леонтий Николаевич
  • Пономарев Евгений Григорьевич
SU1768791A1
Форсунка для дизеля 1984
  • Трусков Владимир Григорьевич
  • Иванов Георгий Иванович
SU1312231A1
Распылитель форсунки для дизеля 1989
  • Альпер Израиль Исаакович
  • Гринсберг Филипп Григорьевич
  • Зайончковский Валентин Николаевич
  • Лемберг Евгений Федорович
  • Милько Александр Петрович
  • Мовсесьян Оганес Григорьевич
SU1693275A1

Иллюстрации к изобретению RU 2 769 207 C2

Реферат патента 2022 года ТОПЛИВНАЯ ФОРСУНКА

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложенная топливная форсунка (100) содержит корпус (102) форсунки и закрепленный на нем распыливающий узел (104), имеющий одно или несколько сопловых отверстий для выпуска топлива в камеру сгорания. При этом в корпусе (102) топливной форсунки (100) расположена пружина (106), имеющая переменный диаметр витков и переменный шаг для регулирования количества топлива, впрыскиваемого в камеру сгорания, в зависимости от режима работы двигателя. Пружина, имеющая переменный диаметр витков и переменный шаг, обеспечивает переменную скорость подъема иглы распылителя форсунки против силы упругости пружины. Переменная скорость подъема иглы обусловливает изменение количества топлива, впрыскиваемого в камеру сгорания. Такое изменение количества впрыскиваемого топлива приводит к уменьшению вредных выбросов и снижению расхода топлива для определенного режима работы двигателя. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 769 207 C2

1. Топливная форсунка (100), содержащая корпус (102) форсунки и распыливающий узел (104), закрепленный на корпусе (102) форсунки и имеющий одно или несколько сопловых отверстий для впрыскивания топлива в камеру сгорания, отличающаяся тем, что в корпусе (102) форсунки расположена пружина (106), имеющая переменный диаметр витков и переменный шаг для регулирования количества топлива, впрыскиваемого в камеру сгорания, в зависимости от режима работы двигателя.

2. Топливная форсунка (100) по п. 1, в которой пружина (106) находится в предварительно нагруженном состоянии.

Документы, цитированные в отчете о поиске Патент 2022 года RU2769207C2

US 5871155 A1, 16.02.1999
JP 2016156320 A, 01.09.2016
JP 2014015857 A, 30.01.2014
ФОРСУНКА ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2005
  • Волков Валерий Иванович
  • Колосов Денис Александрович
  • Дудкин Виктор Иванович
RU2290527C1

RU 2 769 207 C2

Авторы

Сиддеговда Киран Майсур

Даты

2022-03-29Публикация

2018-05-22Подача