Изобретение относится к дорожно-строительным материалам и может быть использовано для устройства различных конструктивных слоев дорожных одежд.
Из уровня техники известны различные композиции дорожно-строительных материалов, предназначенных для использования в качестве дорожного покрытия.
Из уровня техники известны различные композиции строительного назначения, предусматривающих сниженное содержание цемента за счет замены его части минеральными материалами из отходов производств, предназначенных, в том числе, и для устройства конструктивных слоев автомобильных дорог.
Известен состав композиционного вяжущего (по патенту № 2658416 МПК C04B 7/19, C04B 14/26, C04B 22/08, C04B 111/20, опубл. 21.06.2018) для получения строительных материалов различного назначения, в котором около 50 % цемента заменяется на минеральную добавку, включающую: доменный гранулированный шлак – 32-40; карбонатную муку – 4-8; карбонат калия – 6,8 -10,8; сухой суперпластификатор – 0,2. При этом смесь подвергают механохимической активации с измельчением ингредиентов до удельной поверхности 510-560 м2/кг. Несмотря на повышение физико-механических характеристик, композиционное вяжущее представляет собой много компонентную систему, к недостаткам которой следует отнести поиск и доставку нетрадиционного сырья для получения минеральной добавки, а так же затраты на механохимическую активацию.
Наиболее близкой по технической сущности и достигаемому результату является патент № 2436888 МПК Е01С 7/18, опубл. 2012.2011, (прототип). Состав цементоасфальтобетонной смеси включает: щебень фракции 5-20 мм – 48, песок – 41,5, портландцемент – 10,5, битумную эмульсию (сверх 100 % мин. части) – 1,0, вода – 4,2. Недостатком данной смеси является высокий расход цемента, обуславливающий высокую стоимость продукции.
Задачей, на решение которой направлено данное изобретение, является снижение количества цемента в составе материала при сохранении прочностных характеристик, таких, как: трещиностойкость по пределу прочности при растяжении при расколе; водостойкость; предел прочности при растяжении при изгибе; модуль деформации; модуль упругости; снижение прочности при попеременном замораживании оттаивании за 50 циклов.
Задача решается за счёт замены части цемента (25 %) на кислую топливную золу, выступающую в роли пуццолановой добавки.
Технический результат от использования предлагаемого состава цементоасфальтобетона с пониженным содержанием цемента состоит в том, что под воздействием различных видов нагружений, при различных условиях, прочностные характеристики заявляемого цементоасфальтобетона практически не изменяются.
Сущностью изобретения является то, что состав цементоасфальтобетона включает минеральную часть в виде щебня и песка, цемента, кислой топливной золы, а также битумную эмульсию и воду, при этом, кислая топливная зола составляет не более 25 % от массы цемента в составе эмульсии. Таким образом, состав цементоасфальтобетонной смеси имеет следующее соотношение компонентов, мас.% (Таблица 1): щебень гранитный фр. 5-20 мм – 48; песок – 41,5; композиционное цементное вяжущее – 10,5, включающее портландцемент – 7,3-8,9 и кислую топливную золу Троицкой ГРЭС – 1,6-3,2; битумная эмульсия – 1 (сверх 100%); водоцементное соотношение – 0,4; вода (сверх 100% минеральной части без учета воды, присутствующей в битумной эмульсии) – 4,2.
Таблица 1
присутствующей в битумной эмульсии)
Состав цементоасфальтобетона
Заявляемая смесь готовится известным способом:
Для приготовления цементоасфальтобетонной смеси используют раздельно-последовательную технологию, в соответствии с которой предварительно готовят смесь минеральных компонентов (песок, цемент, кислая топливная зола). В отдельном смесителе готовят черный щебень, т.е. щебень смешивают с битумной эмульсией. Затем затворяют водой предварительно подготовленную смесь минеральных компонентов, добавляют черный щебень и перемешивают.
Для экспериментальной проверки прочностных показателей состава цементоасфальтобетонной смеси были подготовлены 4 состава цементоасфальтобетонной смеси (Таблица 2); сравнение проводили с ранее указанным ближайшим аналогом (патент № 2436888), состав которого взяли в пределах, указанных в его описании, мас.%: щебень фракции 5-20 мм – 48, песок – 41,5, портландцемент – 10,5, битумная эмульсия (сверх 100 % мин. части) – 1,0, вода – 4,2.
Таблица 2
компонентов
фр. 5-20 мм
Вариативность составов цементоасфальтобетона в зависимости
от количества добавки для замены цемента
Физико-механические свойства определяли в соответствии с методиками ГОСТ 12801-98. Изготовленные образцы по прошествии 7 суток твердения в условиях абсолютной влажности испытывали на (таблица 3): предел прочности при растяжении при изгибе; водостойкость; модуль деформации; снижение прочности при попеременном замораживании и оттаивании за 50 циклов.
Таблица 3
при изгибе, МПа
Характеристики цементоасфальтобетона с использованием кислой топливной золы Троицкой ГРЭС
Подготовка образцов и применяемое оборудование регламентируется ГОСТ 12801-98. Значения указанных характеристик цементоасфальтобетона определяли на образцах 4-х составов при следующем соотношении компонентов в составах:
1. Образцы, изготовленные из состава смеси № 1 (мас.%): щебень гранитный (фр. 5-20 мм) – 48; песок – 41,50; портландцемент – 8,9; зола Троицкой ГРЭС – 1,6; битумная эмульсия – 1,00; вода – 4,2, по истечении 7 проводили испытания. Предел прочности на растяжение при изгибе составил 3,81 МПа; водостойкость – 1,04; модуль деформации – 1130 МПа; снижение прочности при попеременном замораживании и оттаивании за 50 циклов – 16,74 %.
2. Образцы, изготовленные из состава смеси № 2 (мас.%): щебень гранитный (фр. 5-20 мм) – 48; песок – 41,50; портландцемент – 8,4; зола Троицкой ГРЭС – 2,1; битумная эмульсия – 1,00; вода – 4,2, по истечении 7 проводили испытания. Предел прочности на растяжение при изгибе составил 2,99 МПа; водостойкость – 1,02; модуль деформации – 1100 МПа; снижение прочности при попеременном замораживании и оттаивании за 50 циклов – 16,83 %.
3. Образцы, изготовленные из состава смеси № 3 (мас.%): щебень гранитный (фр. 5-20 мм) – 48; песок – 41,50; портландцемент – 7,9; зола Троицкой ГРЭС – 2,6; битумная эмульсия – 1,00; вода – 4,2, по истечении 7 проводили испытания. Предел прочности на растяжение при изгибе составил 3,79 МПа; водостойкость – 1,01; модуль деформации – 1110 МПа; снижение прочности при попеременном замораживании и оттаивании за 50 циклов – 16,71 %.
4. Образцы, изготовленные из состава № 4 (мас.%): щебень гранитный (фр. 5-20 мм) – 48; песок – 41,50; портландцемент – 7,3; зола Троицкой ГРЭС – 3,2; битумная эмульсия – 1,00; вода – 4,2, по истечении 7 проводили испытания. Предел прочности на растяжение при изгибе составил 3,79 МПа; водостойкость – 0,98; модуль деформации – 940 МПа; снижение прочности при попеременном замораживании и оттаивании за 50 циклов – 17,54 %.
Как видно из результатов испытаний образцов приведенных составов, отличием рассматриваемых составов является варьирование количеством пуццолановой добавки в виде кислой топливной золы Троицкой ГРЭС, введенной взамен части цемента в количестве 1,6 – 3,2 % от массы смеси минеральных компонентов (15 – 30 % от массы цемента с шагом 5 %), влияющее на прочностные показатели образцов (Таблица 2, 3).
Так, составы №1 - 4 содержат 8,9; 8,4; 7,9 и 7,3 % цемента и 1,6; 2,1; 2,6 и 3,2 % (т.е. 15, 20, 25 и 30 % от массы цемента) кислой топливной золы Троицкой ГРЭС соответственно (таблица 2).
Таким образом, были получены и испытаны образцы цементоасфальтобетона с учетом особенностей вяжущего гидратационного типа твердения под воздействием разных нагружений при различных условиях, в соответствии с ГОСТ 12801-98). Количество цемента варьируется от 7,3 до 8,9 %, а пуццолановой добавки в виде кислой топливной золы варьируется от 1,6 до 3,2 %, а соотношение других компонентов смеси оставалось неизменным.
Как показывают результаты экспериментов, наиболее эффективной концентрацией является 7,9 % цемента и 2,6 % кислой топливной золы Троицкой ГРЭС (Таблица 2, состав № 3), когда прочностные характеристики образцов цементоасфальтобетона достигают максимальных значений по сравнению с прототипом (Таблица 3).
Предложенный состав смеси позволяет достигнуть заявленного результата (снижение количества потребляемого цемента, без снижения прочностных характеристик цементоасфальтобетона) за счет того, что взамен части цемента используется пуццолановая минеральная добавка в виде кислой топливной золы Троицкой ГРЭС в количестве 1,6 – 3,2 % от массы минеральных компонентов (или 15 – 30 % от массы портландцемента). Это позволяет снизить количество цемента в составе цементоасфальтобетонной смеси, при этом характеристики цементоасфальтобетона практически не изменяются.
Роль топливной золы заключается в ее химической (пуццолановой) активности. При оптимальном соотношении в системе «цемент+минеральная добавка» компоненты кислой топливной золы, представленные в основном аморфной фазой, вступают в реакцию с продуктами гидратации цемента (Са(OH)2), связывая их в устойчивые гидратные фазы. Данное обстоятельство способствует достижению необходимых прочностных показателей конструктивных слоев из цементоасфальтобетона при сниженном содержании цемента.
В результате экспериментов, установлено, что достижение необходимых прочностных показателей цементоасфальтобетона на основе заявленного состава цементоасфальтобетонной смеси возможно за счет состава (таблица 4), степени дисперсности и активности (индекс активности по ГОСТ 25818-2017) (таблица 5) кислой топливной золы Троицкой ГРЭС, позволяющих сохранить прочность цементного вяжущего.
Таблица 4
Химический состав кислой топливной золы Троицкой ГРЭС
Таблица 5
показателя
Физико-механические свойства кислой топливной золы Троицкой ГРЭС
Согласно анализу научно-технической литературы, использование реакционно активных зол в системе «цемент – зола» в разных случаях позволяет улучшить удобоукладываемость бетонных смесей, их прочностные характеристики, снизить стоимость бетона за счет замены части цемента и повысить его долговечность. Для замены части цемента используется кислая топливная зола Троицкой ГРЭС в количестве 15 – 30 % от массы цемента в составе цементоасфальтобетонной смеси. Использование указанной золы в качестве пуццолановой добавки позволяет при сниженном количестве цемента сохранять активность вяжущего, что дает возможность получать композиционный материал с показателями прочности близкими к показателям образцов состава без добавки. Следует отметить, что топливная зола используется в том виде в котором поступает с производства и, в данном случае, не требует дополнительной активации. Введение большего количества активной минеральной добавки в виде кислой топливной золы приводит к значительной потере активности вяжущего, выражающейся в снижении прочностных показателей. Введение меньшего количества активной минеральной добавки не позволит добиться необходимой активности вяжущего ввиду сниженного его количества и недостаточной концентрации пуццоланового компонента.
Предложенный состав смеси позволяет достигнуть заявленного результата – снижение количества цемента без потери прочности.
Таким образом, задача, стоящая перед изобретением, решена.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ЦЕМЕНТОАСФАЛЬТОБЕТОНА ДОРОЖНО-СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ ДЛЯ ЭКСПЛУАТАЦИИ В УСЛОВИЯХ ВЫСОКИХ ТЕМПЕРАТУР | 2021 |
|
RU2763216C1 |
СОСТАВ ЦЕМЕНТОАСФАЛЬТОБЕТОНА ДОРОЖНО-СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ | 2021 |
|
RU2775249C1 |
ГРУНТОБЕТОН ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА | 2022 |
|
RU2810657C1 |
ГРУНТОБЕТОН ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА | 2022 |
|
RU2795808C1 |
ГИБРИДНАЯ ОРГАНОМИНЕРАЛЬНАЯ ДОБАВКА | 2015 |
|
RU2608139C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА С НАНОДИСПЕРСНОЙ ДОБАВКОЙ | 2011 |
|
RU2471752C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА С НАНОДИСПЕРСНОЙ ДОБАВКОЙ (ВАРИАНТЫ) | 2011 |
|
RU2489381C2 |
ПЛОТНАЯ ОРГАНОМИНЕРАЛЬНАЯ СМЕСЬ | 2010 |
|
RU2447035C1 |
ПЛОТНАЯ ЛИТАЯ ЭМУЛЬСИОННО-МИНЕРАЛЬНАЯ СМЕСЬ | 2003 |
|
RU2243949C1 |
АСФАЛЬТОБЕТОННАЯ СМЕСЬ | 2012 |
|
RU2522497C1 |
Изобретение относится к дорожно-строительным материалам и может быть использовано для устройства различных конструктивных слоев дорожных одежд. Состав цементоасфальтобетонной смеси дорожно-строительного назначения содержит, мас.%: минеральную часть в виде щебня гранитного фр. 5-20 мм 48 и песка 41,5, вяжущее – портландцемент 7,3-8,9 и кислую топливную золу Троицкой ГРЭС 1,6-3,2, битумную эмульсию (сверх 100% от минеральной части) 1, воду (сверх 100% от минеральной части без учета воды, присутствующей в битумной эмульсии) 4,2, водовяжущее соотношение 0,4. Изобретение развито в зависимом пункте формулы. Технический результат – сохранение прочностных характеристик цементоасфальтобетона при замене части цемента кислой золой. 1 з.п. ф-лы, 5 табл.
1. Состав цементоасфальтобетонной смеси дорожно-строительного назначения, содержащий минеральную часть в виде щебня фр. 5-20 мм и песка, вяжущее – портландцемент, а также битумную эмульсию и воду, отличающийся тем, что используют гранитный щебень, а вяжущее дополнительно содержит кислую топливную золу Троицкой ГРЭС, при следующем соотношении компонентов, мас.%:
2. Состав по п.1, отличающийся тем, что количество кислой топливной золы Троицкой ГРЭС составляет 15-30% от массы портландцемента.
СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕМЕНТНО-АСФАЛЬТОБЕТОННОЙ СМЕСИ И ЕЕ СОСТАВ | 2010 |
|
RU2436888C2 |
АСФАЛЬТОБЕТОННАЯ СМЕСЬ НА ОСНОВЕ МОДИФИЦИРОВАННОГО БИТУМА ДЛЯ УСТРОЙСТВА ПОКРЫТИЙ АВТОМОБИЛЬНЫХ ДОРОГ | 2015 |
|
RU2613068C1 |
Асфальтобетонная смесь для дорожных покрытий | 1975 |
|
SU573527A1 |
Складной ящик | 1926 |
|
SU18265A1 |
Подогреватель питательной воды для паровых котлов | 1929 |
|
SU17238A1 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
DE 4210224 C1, 27.05.1993. |
Авторы
Даты
2022-06-03—Публикация
2021-09-02—Подача