Способ спектрофотометрического определения содержания гуминовых веществ в жидких гуминовых препаратах Российский патент 2022 года по МПК G01N33/15 

Описание патента на изобретение RU2778504C1

Изобретение относится к агрохимии, и может быть использовано для количественного определения гуминовых веществ в жидких гуминовых препаратах.

За последние десятилетие высокие темпы роста сельскохозяйственного производства привели к интенсивности использования широкого спектра удобрений и пестицидов, в том числе гуминовых препаратов. Такие препараты не являются удобрениями в буквальном смысле, поскольку содержание элементов питания в них невелико. Скорее это природные биологически активные вещества, которые в оптимальных дозах стимулируют прорастание семян, улучшают дыхание и питание растений, регулируют поступление в растения тяжелых металлов и радионуклидов и в конечном итоге увеличивают урожайность [1]. Активность данных процессов зависит от типа и содержания свободных гуминовых веществ в препарате. Химический состав этих веществ связан с географическим происхождением, возрастом, климатом, биологическими условиями и пр.. Свойства препаратов на их основе зависят от исходного сырья (состав, которых разнообразен) и технологических особенностей производства. Существуют различные способы определения гуминовых веществ количественного содержания в гуминовых препаратах. Распространенным является спектрофотометрический способ определения. Экспрессность и эффективность этого метода позволяют использовать его при технологическом контроле разных препаратов при производстве и применении жидких удобрений. Данный анализ затруднен, тем, что оптическая плотность препаратов будет зависеть от состава исходного сырья препарата. В связи с этим важным является установление наиболее чувствительной длинны волны при определении концентрации веществ в жидких гуминовых препаратах.

Существует несколько методов определения содержания гуминовых кислот.

В почвенно-зоологических исследованиях для идентификации гуминовых веществ широко используется метод Кулльманна и Фрейтага (Kullmann, Freitag, 1957). Метод основан на фотоколориметрическом определении экстрактов гуминовых кислот и фульвокислот по коэффициенту пропускания при длинах волн: 465, 533, 574, 619, 665, 726 нм [2]. Использование данного способа возможно только для определения веществ на качественном уровне.

Количественное фотоколориметрическое определения содержания гуминовых кислот в почвах возможно по метод Вельте (Welte, 1956). В данном способе оптические плотности раствора гумата измеряют при длинах волн 472 и 665. Концентрация веществ определяется по специальной формуле [3]. Методика мало чувствительна из-за анализа в видимой области спектра.

Известен способ спектрофотометрического определения гуминовых кислот в природных водах. Перед определением проводят предварительную подготовку пробы воды с использованием пирофосфата натрия и концентрированной соляной кислоты. Время проведения данного процесса составляет более 24 часов. Выпавшие в течение этого времени гуминовые кислоты отделяют центрифугированием, осадок их промывают 5 мл 0,1 М раствора соляной кислоты, взбалтывают и центрифугируют. Затем гуминовые кислоты растворяют в 0,5%-ном растворе едкого натра и измеряют оптическую плотность этого раствора на спектрофотометре СФ-4 при 340 и 440 ммк в кварцевых кюветах с толщиной слоя 10 мм. Концентрация веществ определяется по специальной формуле. Чувствительность данного способа довольна высока - 10 мкг гуминовых кислот в пробе с погрешностью 10%. Однако использование дополнительных реагентов ведет к дополнительным расходам [4].

Авторами [5] описан способ определения гуматов по совокупности признаков, элементному составу, с помощью ИК-спектроскопии. Определение основано на получении гуматов металлов путем добавления растворов нитратов определенного металла. Полученные осадки отфильтровывают и промывают значительным объемом дистиллированной воды или спиртом для удаления избытка ионов металлов. Количественное определение металлов в составе гуматов проводится методом рентгенофлюоресцентного анализа. ИК-спектры полученных образцов снимают на ИК-Фурье спектрофотометре. Недостатком такого подхода является использование дорогостоящего оборудования, участия специалистов разного профиля, длительность во времени.

Известен способ анализа гуминовых кислот пелоидов [6]. Исследуемая субстанция является очищенным экологически чистым препаратом, минерализация которого не превышает 1%, содержание тяжелых металлов не более 3,0⋅10-4 %. Это темно-коричневое, почти черное, чешуйчатое твердое вещество, без запаха и вкуса. Гуминовые кислоты в данном случае являются природным компонентом лечебных грязей. Анализ гуминовых кислот включает спектрофотометрическое определение щелочного раствора веществ, отличающийся тем, что обработку образца проводят 0,05 М раствором натрия гидроксида в течение 4 ч на водяной бане, затем доводят рН раствора до 10,0, перед спектрофотометрическим определением анализируемую пробу разводят дистиллированной водой, и измеряют оптическую плотность раствора в области значений 310-800 нм, при этом качественной характеристикой являются максимумы поглощения при 350 нм и 390 нм, а для количественной оценки гуминовых кислот проводят определение при длине волны 350 нм с использованием калибровочного графика. Описанный способ выбран в качестве прототипа. Недостатками данного способа являются:

1. использование большого числа реагентов, что ведет к дополнительным расходам, усложнению эксперимента;

2. проведение анализа занимает большое количество времени.

Задачей настоящего изобретения является способ спектрофотометрического определения содержания гуминовых кислот в жидких гуминовых препаратах, с целью определения наиболее чувствительной длинны волны, подходящей для исследуемых препаратов. Предложенный способ способен снизить трудоемкость, уменьшить количество используемых реагентов и временя проведения анализа.

Поставленная задача решается тем, что способ спектрофотометрического определения содержания гуминовых веществ в жидких гуминовых препаратах, включает предварительное удаление примесного осадка из пробы с известной концентрацией методом центрифугирования. Далее отбирают аликвоту из полученного маточного раствора, разводят ее дистиллированной водой в соотношении от 1:100 до 1:500 определяют наиболее чувствительную длину волны в области значений 310-800 нм и строят калибровочный график, с помощью которого рассчитывают содержание гуминовых веществ в анализируемых образцах.

Пример конкретного осуществления изобретения приведен ниже.

Исследуемый препарат представляет собой жидкий растительный экстракт, полученный из торфа. Содержание гуминовых кислот заявлено производителем в таких препаратах 1,30% - 2,5%, фульвокислот - 0,45% - 1,08%. В пробирку помещают 10 мл исходного препарата с известной концентрацией гуминовых веществ и центрифугируют при 2000 об./мин., после этой процедуры из маточного раствора пипеткой отбирают 1 мл жидкости и помещают в мерную колбу на 250 мл, доводят дистиллированной водой до метки. Оптическую плотность, полученного раствора измеряют на спектрофотометре с использованием кварцевой кюветы с толщиной 10 мм в диапазоне 310-600 нм относительно дистиллированной воды. Результаты измерений приведены в таблице 1, вид спектра приведен на фиг.1. (спектр раствора жидкого растительного экстракт в интервале длин волн 315-800 нм.)

Видно, что в области исследуемых значений длин волн присутствует одна полоса поглощения с максимумом при 340 нм, которая далее была использована для количественного определения гуминовых веществ.

Для построения калибровочного графика готовят серию стандартных растворов из препарата прошедшего предварительное центрифугирование. В колбы на 250 мл вносят разное количество маточного раствора гуминового препарата с концентрацией гуминовых веществ 1,7% (определено по ГОСТ 9517-94 (ИСО 5073-85)) и доводят водой до метки, перемешивают и измеряют оптическую плотность при длине волны 340 нм на спектрофотометре. Результаты измерения оптической плотности приведены в таблице 2; калибровочный график - на фиг. 2. (калибровочный график для спектрофометрического количественного определения гуминовых веществ в жидких растительных экстрактах, рН~6,5-7,5, d=10, длина волны 340 нм).

Зависимость величины аналитических сигналов (длины окрашенной зоны) линейна в диапазоне концентраций 0,8-2,5%. Линейность подтверждается коэффициентами корреляции, близкими к единице. Последующее количественное определение гуминовых веществ в анализируемых образцах рассчитывается с помощью калибровочного графика. Время проведения анализа ~10 минут.

Заявляемый способ позволяет провести качественный и количественный анализ гуминового препарата в течение 10 минут, не считая времени пробоподготовки, которое составляет в среднем 15 минут.

Заявляемый способ по сравнению с известными обладает более низкой себестоимостью, меньшими трудозатратами, высокой точностью, и воспроизводимостью.

Таблица 1 - Результаты спектрофотометрирования растворов жидкого растительного препарата в интервале длин волн 315-800 нм (при рН 6,5-7,5 С(ГВ)=0,01%, d=10) λ (нм) Оптическая плотность λ (нм) Оптическая плотность 315 0,938 550 0,282 330 1,270 600 0,216 340 1,384 650 0,167 345 1,311 700 0,130 350 1,250 800 0,082 370 1,013 400 0,768 430 0,602 460 0,486 500 0,377

Таблица 2 - Результаты спектрофометрического количественного определения гуминовых веществ в жидких растительных препаратах Концентрация раствора ГВ, мас. % Оптическая плотность 0,87 0,479 1,40 0,769 1,57 0,858 1,75 0,928 1,93 1,037 2,28 1,239 2,45 1,32

Список Литературы:

1. Noble A.D., Randall P.J. and James T.R. Evaluation of two coal-derived organic products in ameliorating surface and subsurface soil acidity // Europ. J. Soil Sci., V. 46, 1995. - P. 65-75.

2. Ускорение роста и развития растений путем использования органических поливных растворов в гидропонном кормопроизводстве / М.Л. Гордиевских, Е.И. Столбовая, В.В. Евченко // АПК России: Южно-Уральский государственный аграрный университет. - 2015. - №73. - С. 129-133.

3. Методы почвенно-зоологических исследований / Под ред. М.С. Гилярова. - М.: Наука, 1975. - 274 с.

4. Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа природных вод. - М.: Недра, 1970. - 488 с.

5. Компоненты иловых сульфидных грязей - гуматы. Способы идентфикации / М.А. Кривопалова, Н.П. Аввакумова, М.Н. Глубокова и др. // Известия Самарского научного цента Российской академии наук. - 2015. - Т. 17. - №5. - С. 289-292.

6. Пат. 2312343 Российская Федерация, МПК G01N 33/15 Способ анализа гуминовых кислот пелоидов / Аввакумова Н.П., Кривопалова М.А., Ткаченко М.Л., Аввакумова А.А., Захарова Е.А., Глубокова М.Н., Бонцевич А.И.; ООО "Пелоид". - 2005136935/15 заявл. 28.11.05; опубл. 10.12.07.

Похожие патенты RU2778504C1

название год авторы номер документа
СПОСОБ АНАЛИЗА ГУМИНОВЫХ КИСЛОТ ПЕЛОИДОВ 2005
  • Аввакумова Надежда Петровна
  • Кривопалова Мария Ариевна
  • Ткаченко Михаил Лукич
  • Аввакумова Анна Альбертовна
  • Захарова Елена Александровна
  • Глубокова Мария Николаевна
  • Бонцевич Андрей Иванович
RU2312343C2
СПОСОБ АНАЛИЗА ГИМАТОМЕЛАНОВЫХ КИСЛОТ ПЕЛОИДОВ 2006
  • Аввакумова Надежда Петровна
  • Кривопалова Мария Ариевна
  • Катунина Елена Евгеньевна
  • Аввакумова Анна Альбертовна
  • Глубокова Мария Николаевна
RU2338188C2
Способ определения водорастворимых гуминовых веществ в водных средах 2021
  • Гаджиева Виктория Александровна
  • Мясоедова Татьяна Николаевна
RU2774153C1
Средство, гуминовой природы, обладающее иммуномодулирующей активностью 2019
  • Трофимова Евгения Сергеевна
  • Зыкова Мария Владимировна
  • Данилец Марина Григорьевна
  • Лигачева Анастасия Александровна
  • Шерстобоев Евгений Юрьевич
  • Белоусов Михаил Валерьевич
  • Юсубов Мехман Сулейманович
  • Жукова Ксения Михайловна
  • Кривощеков Сергей Владимирович
  • Логвинова Людмила Анатольевна
  • Братишко Кристина Александровна
RU2716504C1
Способ количественного определения гуминовых кислот в сапропеле 2023
  • Конюхова Ольга Михайловна
  • Дерягина Марина Сергеевна
RU2798556C1
Средство гуминовой природы, обладающее иммуномодулирующей активностью 2017
  • Данилец Марина Григорьевна
  • Зыкова Мария Владимировна
  • Трофимова Евгения Сергеевна
  • Лигачева Анастасия Александровна
  • Шерстобоев Евгений Юрьевич
  • Данилец Андрей Викторович
  • Белоусов Михаил Валерьевич
  • Юсубов Мехман Сулейманович
  • Жукова Ксения Михайловна
  • Кривощеков Сергей Владимирович
  • Логвинова Людмила Анатольевна
RU2662094C1
Гуминовый препарат и способ его получения 2019
  • Бутов Антон Алексеевич
  • Лаевский Дмитрий Петрович
RU2717659C1
СПОСОБ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОЙ СУБСТАНЦИИ ГУМИНОВЫХ КИСЛОТ ИЗ НИЗКОМИНЕРАЛИЗОВАННЫХ ИЛОВЫХ СУЛЬФИДНЫХ ГРЯЗЕЙ 2011
  • Аввакумова Надежда Петровна
  • Кривопалова Мария Ариевна
  • Фомин Игорь Викторович
RU2480224C2
СРЕДСТВО ГУМИНОВОЙ ПРИРОДЫ ДЛЯ ПОВЫШЕНИЯ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ И ВЫНОСЛИВОСТИ 2019
  • Зыкова Мария Владимировна
  • Белоусов Михаил Валерьевич
  • Замощина Татьяна Алексеевна
  • Гостюхина Алена Анатольевна
  • Логвинова Людмила Анатольевна
  • Голубина Ольга Александровна
  • Светлик Михаил Васильевич
  • Мойсеева Алена Викторовна
  • Зайцев Константин Васильевич
  • Абдулкина Наталья Геннадьевна
RU2727692C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТРИТЕРПЕНОВЫХ САПОНИНОВ В РАСТИТЕЛЬНОМ СЫРЬЕ И ЛЕКАРСТВЕННЫХ ПРЕПАРАТАХ 2009
  • Мироненко Наталья Владимировна
  • Брежнева Татьяна Александровна
  • Селеменев Владимир Федорович
RU2413951C1

Иллюстрации к изобретению RU 2 778 504 C1

Реферат патента 2022 года Способ спектрофотометрического определения содержания гуминовых веществ в жидких гуминовых препаратах

Изобретение относится к агрохимии и может быть использовано для количественного определения гуминовых веществ в жидких гуминовых препаратах. Способ спектрофотометрического определения содержания гуминовых веществ в жидких гуминовых препаратах, включающий спектрофотометрический анализ раствора гуминовых веществ, в котором перед определением из пробы с известной концентрацией гуминовых веществ удаляют примесный осадок методом центрифугирования, отбирают аликвоту из полученного маточного раствора, разводят ее дистиллированной водой в соотношении от 1:100 до 1:500, определяют наиболее чувствительную длину волны в области значений 310-800 нм и строят калибровочный график, с помощью которого рассчитывают содержание гуминовых веществ в анализируемых образцах. Вышеописанный способ эффективен для определения содержания гуминовых веществ в жидких гуминовых препаратах, характеризуется высокой точностью, способен снизить трудоемкость, уменьшить количество используемых реагентов и время проведения анализа. 2 ил., 2 табл.

Формула изобретения RU 2 778 504 C1

Способ спектрофотометрического определения содержания гуминовых веществ в жидких гуминовых препаратах, включающий спектрофотометрический анализ раствора гуминовых веществ, отличающийся тем, что перед определением из пробы с известной концентрацией гуминовых веществ удаляют примесный осадок методом центрифугирования, отбирают аликвоту из полученного маточного раствора, разводят ее дистиллированной водой в соотношении от 1:100 до 1:500, определяют наиболее чувствительную длину волны в области значений 310-800 нм и строят калибровочный график, с помощью которого рассчитывают содержание гуминовых веществ в анализируемых образцах.

Документы, цитированные в отчете о поиске Патент 2022 года RU2778504C1

СПОСОБ АНАЛИЗА ГУМИНОВЫХ КИСЛОТ ПЕЛОИДОВ 2005
  • Аввакумова Надежда Петровна
  • Кривопалова Мария Ариевна
  • Ткаченко Михаил Лукич
  • Аввакумова Анна Альбертовна
  • Захарова Елена Александровна
  • Глубокова Мария Николаевна
  • Бонцевич Андрей Иванович
RU2312343C2
RU 23338188 C2, 10.11.2008
ШИРШОВА Л.Т
и др
Применение спектрофотометрии для определения содержания гуминовых веществ в многолетнемерзлых отложениях // Криосфера Земли, 2015, т
XIX, N4, с
Счетный сектор 1919
  • Ривош О.А.
SU107A1
ГЛУШКОВА И.А
и др
Методы идентификации гуминовых веществ // III Всеросс
молодежн
научно-практич
конференция

RU 2 778 504 C1

Авторы

Бричков Антон Сергеевич

Жаркова Валентина Викторовна

Даты

2022-08-22Публикация

2021-11-30Подача