Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе высокочистых лантанидов.
Известны способы люминесцентного определения тербия в комплексе с органическими реагентами:
Патент РФ №2412435 «Люминесцентный способ определения тербия». Изобретение относится к области аналитической химии - к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе высококачественных лантанидов и в природных водах. В качестве комплексообразователя используется органический реагент (R) - дифениловый эфир сульфосалициловой кислоты (ДЭСК), и в раствор люминесцирующего комплексного соединения тербия с ДЭСК приливают поверхностно-активное вещество (ПАВ) - цетилпиридиний бромистый, в соотношениях Tb:K:ПАВ=1:2:13 и слабыми растворами аммиака и соляной кислоты создают рН=7,5±0,1. Достигается повышение точности, чувствительности и селективности анализа.
Патент РФ №2194013 «Люминесцентный способ определения тербия». Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия. Тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - метиловым эфиром S-(4-броманилидом) сульфосалициловой кислоты в присутствии катионного поверхностно-активного вещества (ПАВ) хлорида децилпиридиния. Соотношение Tb:R:ПАВ=1:2:13, рН 7,9±0,08. Способ отличается высокой селективностью и воспроизводимостью. Он позволяет одновременно определять Tb, Dy, Sm, Eu в оксидах лантаноидов.
Патент РФ №2506569 «Люминесцентный способ определения тербия». Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом. В качестве реагента используют 1,2-диоксибензол-3,5-дисульфокислоту (ДБСК) и в раствор люминесцирующего комплексного соединения тербия с ДБСК добавляют этилендиаминтетрауксусную кислоту (ЭДТА) в соотношении Tb:ДБСК: ЭДТА=1:1:1 при рН=12,0-13,0.
Недостатками предложенных способов являются недостаточная чувствительность, селективность и устойчивость во времени стояния и облучения, а также высокая трудоемкость получения комплексного соединения и продолжительность анализа.
Задача, решаемая изобретением, заключается в поиске нового реагента, который позволит снизить предел обнаружения, повысит устойчивость, чувствительность, селективность и снизит продолжительность анализа.
Результат достигается тем, что тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - ципрофлоксацином (ЦФ), соотношение Tb:R=1:2, при рН=5,8±0,1.
Пример 1.
Для получения растворов хлоридов лантанидов, их оксиды предварительно прокаливали в течение одного часа в муфельной печи при температуре 650-700°С и охлаждают в эксикаторе. Навеску оксидов лантанидов по расчетам их 10-1 М концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают. Сухой остаток редкоземельных элементов (РЗЭ) растворяют в дистиллированной воде. Растворы с меньшей концентрацией реагента готовили соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролировали комплексонометрическим методом. Титрование производили в присутствии уротропина, в качестве индикатора использовали арсеназо I. Растворы ципрофлоксацина (ЦФ) готовили из точной навески 0,0184 г, растворяли в этиловом спирте, отфильтровывали раствор и переносили в мерную колбу на 50 мл.
При добавлении к раствору тербия раствора ципрофлоксацина, установлении рН=5,8±0,1 и облучении УФ-светом наблюдается свечение зеленого цвета, характерное для ионов тербия.
Пример 2.
Для получения растворов хлоридов лантанидов, их оксиды предварительно прокаливали в течение одного часа в муфельной печи при температуре 650-700°С и охлаждают в эксикаторе. Навеску оксидов лантанидов по расчетам их 10-3 М концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают. Сухой остаток редкоземельных элементов (РЗЭ) растворяют в дистиллированной воде. Растворы с меньшей концентрацией реагента готовили соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролировали комплексонометрическим методом. Титрование производили в присутствии уротропина, в качестве индикатора использовали арсеназо I. Растворы ципрофлоксацина (ЦФ) готовили из точной навески 0,0184 г, растворяли в этиловом спирте, отфильтровывали раствор и переносили в мерную колбу на 50 мл.
При добавлении к раствору тербия раствора ципрофлоксацина, установлении рН=5,8±0,1 и облучении УФ-светом наблюдается свечение зеленого цвета, характерное для ионов тербия.
Пример 3.
Для получения растворов хлоридов лантанидов, их оксиды предварительно прокаливали в течение одного часа в муфельной печи при температуре 650-700°С и охлаждают в эксикаторе. Навеску оксидов лантанидов по расчетам их 10-5 М концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают. Сухой остаток рездкоземельных элементов (РЗЭ) растворяют в дистиллированной воде. Растворы с меньшей концентрацией реагента готовили соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролировали комплексонометрическим методом. Титрование производили в присутствии уротропина, в качестве индикатора использовали арсеназо I.
Растворы ципрофлоксацина (ЦФ) готовили из точной навески 0,0184 г, растворяли в этиловом спирте, отфильтровывали раствор и переносили в мерную колбу на 50 мл. Измерение рН растворов проводят с помощью универсального иономера ЭВ-74 со стеклянными электродами, прокалиброванными по стандартным буферным растворам. Для определения содержания тербия в оксидах РЗЭ применяли метод добавок.
Исследования проводили на приборе Perkinelmer LS 55, интенсивность люминесценции комплексов регистрировали при λ=545 нм. По величине пиков люминесценции растворов пробы и пробы с добавками рассчитывали содержание тербия в анализируемом образце.
I люм Tb в комплексе с ЦФ исследована в интервале длин волн 500-600 нм (фиг.1). Как видно из рисунка, максимальное свечение комплекса Tb с ЦФ наблюдается в интервале длин волн 520-560 нм с пиком при λ=514 нм и максимумом при λ=545 нм. Растворы ионов Tb и самого реагента ЦФ не дают люминесцентного свечения в этой области.
Фиг.1. Зависимости Iлюм от длины волны растворов Tb (I), ЦФ (II) и комплекса Tb с ЦФ (III), CTb=СЦФ=1 мл 1⋅10-3М; рН=6,0; V=10 мл; l=1 см
Поглощательная способность исследуемых растворов проявляется максимально в интервале длин волн 250-300 нм (табл.1).
В этой области наблюдается минимальное поглощение световой энергии растворов тербия. Растворы ЦФ и комплекса максимально поглощают при (=280 нм, но пик поглощения (А) раствора комплекса выше. Соотношение компонентов в комплексе Tb с ЦФ при рН=5,8 изучено флуориметрически с использованием методов молярных отношений и изомолярных серий. Согласно полученным данным, соотношение компонентов в комплексе Tb с ЦФ равно Tb:ЦФ=1:2 (табл.2).
Зависимость Iлюм комплекса Tb с ЦФ от рН раствора, создаваемого добавлением разбавленных растворов HCl и NH4OH, представлена на фиг.2.
Фиг.2. Влияние рН раствора на Iлюм комплекса Tb с ЦФ, CTb=0,5 мл 1⋅10-3М; СЦФ=1 мл 1⋅10-3М; (=545 нм; V=10 мл; l=1 см
Iлюм, мм
Наибольшая Iлюм растворов комплекса Tb с ЦФ наблюдается в интервале рН=5-7 с максимумом при рН=5,8.
Для раствора, имеющего постоянную концентрацию Tb (0,5 мл 1⋅10-3 М), достаточным для максимального образования комплекса Tb с ЦФ является добавление 1,2 мл 1⋅10-3 М раствора реагента (табл.3).
Растворы комплекса максимально образуются через 20 мин после сливания всех реагентов и создания рН=5,8; далее интенсивность свечения комплекса остается постоянной до 2-х часов, а затем Iлюм раствора комплекса постепенно снижается. При постоянном облучении раствора комплекса Tb с ЦФ УФ-светом первые 20 мин наблюдается увеличение Iлюм, затем она остается постоянной до 4-х часов и далее постепенно снижается.
При введении в раствор комплекса Tb с ЦФ других РЗЭ Iлюм снижается в разной степени - от 78 до 35% (табл.4).
1⋅10-3М
Изучено влияние d-элементов на Iлюм раствора комплекса Tb с ЦФ (табл.5). Zn, Pb и Sn не влияют на Iлюм Tb в комплексе с ЦФ, Fe и Ti - гасят, а другие элементы в разной степени снижают Iлюм Tb в растворе комплекса с ЦФ. Нижний предел обнаружения Tb с ципрофлоксацином составляет 5,61⋅10-8 г/мл Tb. После сорбционного концентрирования Tb в комплексе с ЦФ на сорбенте АВ-17 нижний предел обнаружения снизился на один порядок и составил 4,6⋅10-9 г/мл Tb.
Технический результат, достигаемый изобретением: снижение предела обнаружения, повышение устойчивости, чувствительности и селективности люминесцентного способа определения тербия.
название | год | авторы | номер документа |
---|---|---|---|
Люминесцентный способ определения тербия с офлоксацином | 2022 |
|
RU2789108C1 |
Люминесцентный способ определения тербия с нолицином | 2022 |
|
RU2794672C1 |
Люминесцентный способ определения тербия с метилэтиловым эфиром сульфосалициловой кислоты | 2020 |
|
RU2747594C1 |
Люминесцентный способ определения тербия с ципролетом | 2022 |
|
RU2784340C1 |
Люминесцентный способ определения самария с метакрилатом гуанидина | 2023 |
|
RU2799664C1 |
Люминесцентный способ определения неодима с метакрилатом гуанидина | 2023 |
|
RU2825005C1 |
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2009 |
|
RU2412435C1 |
СПОСОБ ЛЮМИНЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ ТЕРБИЯ В ГОРНЫХ ПОРОДАХ | 1991 |
|
RU2007710C1 |
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2012 |
|
RU2506569C1 |
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2001 |
|
RU2194013C1 |
Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе высокочистых лантанидов. Предложен люминесцентный способ определения тербия, включающий перевод его в люминесцирующее комплексное соединение с органическим реагентом (R), отличающийся тем, что в качестве органического реагента используют ципрофлоксацин в соотношениях Тb:R=1:2 при рН=5,8±0,1 с нижним пределом обнаружения 5,61⋅10–8 г/мл Tb и после сорбционного концентрирования на сорбенте АВ-17 составил 4,6⋅10–9 г/мл Tb, причем для получения растворов хлоридов лантанидов их оксиды предварительно прокаливают в течение одного часа в муфельной печи при температуре 650-700oС и охлаждают в эксикаторе, навеску оксидов лантанидов по расчетам их концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают, далее сухой остаток редкоземельных элементов растворяют в дистиллированной воде, и при облучении УФ-светом наблюдается свечение зеленого цвета ионов тербия. Технический результат - предложенный способ позволяет добиться снижения предела обнаружения, повышения устойчивости, чувствительности и селективности люминесцентного способа определения тербия. 2 ил., 5 табл., 3 пр.
Люминесцентный способ определения тербия, включающий перевод его в люминесцирующее комплексное соединение с органическим реагентом (R), отличающийся тем, что в качестве органического реагента используют ципрофлоксацин в соотношениях Тb:R=1:2 при рН=5,8±0,1 с нижним пределом обнаружения 5,61⋅10–8 г/мл Tb и после сорбционного концентрирования на сорбенте АВ-17 составил 4,6⋅10–9 г/мл Tb, причем для получения растворов хлоридов лантанидов их оксиды предварительно прокаливают в течение одного часа в муфельной печи при температуре 650-700oС и охлаждают в эксикаторе, навеску оксидов лантанидов по расчетам их концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают, далее сухой остаток редкоземельных элементов растворяют в дистиллированной воде, и при облучении УФ-светом наблюдается свечение зеленого цвета ионов тербия.
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2012 |
|
RU2506569C1 |
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2001 |
|
RU2194013C1 |
ЛЮМИНЕСЦЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРБИЯ | 2009 |
|
RU2412435C1 |
CN 101196483 A, 11.06.2008 | |||
CARO DE LA TORRE M.A | |||
and et | |||
al., Evaluation of the terbium (III)-sensitized luminescence with benzenepolycarboxylic acids: Determination of terephtalic acid in drink samples, ANALITICA CHIMICA ACTA, 2000, v.407, N1-2, p.53-60. |
Авторы
Даты
2022-11-29—Публикация
2022-07-25—Подача