Сенсор для измерения концентрации кислорода в газовой смеси Российский патент 2023 года по МПК G01N27/417 

Описание патента на изобретение RU2795670C1

Изобретение относится к аналитической технике, в частности к сенсорам для анализа газовых сред и может быть использовано для измерения концентрации кислорода в газовых смесях в широком диапазоне, что имеет существенное значение для энергетики и автомобильной промышленности - оптимизация сжигания топлива в теплоагрегатах и автомобильных двигателях, а также экологии, медицины и др.

Известны диффузионные амперометрические сенсоры кислорода, работающие на основе твердых электролитов с кислородно-ионной проводимостью на основе окиси циркония с добавками оксидов кальция или иттрия.

Так, из уровня техники известен кислородный датчик [RU 55143, опубл. 27.07.20061]. Известный датчик содержит нагреватель, термопару и твердоэлектролитную пробирку из диоксида циркония, обладающую кислородной приводимостью, с нанесенными электродами из пористого газопроницаемого материала. Катодная камера ячейки соединена с анализируемым газом через диффузионный барьер, в качестве которого использован капилляр из твердого электролита на основе диоксида циркония с внутренним диаметром канала 0,7-1,2 мм и длиной 40-80 мм, конструктивно совмещенный с деталями газового тракта и катодной камерой твердоэлектролитной ячейки, размещенной внутри нагревателя, создающего равномерное температурное поле в рабочей области измерений. Датчик дает возможность измерения объемной доли кислорода в кислородо-азотной и кислородо-аргонной газовых смесях в диапазоне 98…100% с абсолютной погрешностью ±0,1%.

Недостатком данного датчика является то, что он не может анализировать малые концентрации кислорода в рассматриваемых газовых смесях, т.к. при концентрациях кислорода в диапазоне от 1% и ниже откачка кислорода из катодной камеры (полости) будет много больше, чем поступление кислорода в полость по диффузионному каналу. При этом достигнуть равновесия в системе: поступление кислорода в полость - откачка кислорода из полости невозможно.

Кроме того, датчик имеет низкое быстродействие, обусловленное значительным объемом катодной камеры (пробирки) и большими габаритами в целом.

Техническая проблема, на решение которой направлено заявленное изобретение, заключается в создании сенсора, расширяющего диапазон измерения концентраций кислорода в газовых смесях, с высоким быстродействием и меньшими габаритами.

Для этого предложен сенсор для измерения концентрации кислорода в газовой смеси, содержащий три диска, крайние из которых выполнены из кислородопроводящего твердого электролита, имеют электроды на противоположных поверхностях, между дисками содержится безэлектродный керамический диск, все диски газоплотно соединены между собой с образованием двух полостей, в одну из которых в качестве диффузионного барьера герметично входит капилляр, имеющий соотношение длины канала к его диаметру, равное 80, а в другую - капилляр в виде сквозного канала круглого сечения, выполненного в теле соответствующего крайнего диска и расположенных на ней электродов, имеющий соотношение длины канала к его диаметру, равное 0.5.

Сенсор заявленной конструкции представляет собой две электрохимические ячейки, при этом ячейка, имеющая капилляр с соотношением длины капилляра к диаметру его сечения равным 80, работает при анализе газовой смеси с содержанием кислорода в диапазоне концентраций от 0,1 до 100%. Получить предельный ток при концентрации кислорода менее 0,1% не получится, т.к. откачки кислорода из полости ячейки будет происходить намного быстрее, чем поступление кислорода в полость по капилляру вследствие диффузии. Для измерений концентраций кислорода менее 0,1 необходимо увеличить скорость поступления кислорода в полость ячейки, для чего необходимо увеличить диаметр канала капилляра и (или) уменьшить его длину.

Ячейка, имеющая капилляр в виде сквозного канала в поверхности твердоэлектролитного диска с электродами при соотношении длины канала к его диаметру, равном 0.5, позволяет снизить нижний предел измерения концентрации кислорода до ~ 1Е-7%. Дальнейшее снижение величины этого соотношения не приводит к снижению порога чувствительности сенсора, т.к. при концентрациях кислорода < 1Е-7% диффузия перестает быть нормальной молекулярной и становится смешанной. При этом верхний предел определения концентрации кислорода на этой ячейке снижается и составляет 5÷7%, что обусловлено большим поступлением кислорода в полость ячейки и недостаточной скоростью откачки кислорода из нее.

Наличие в сенсоре двух диффузионных барьеров, имеющих соотношение длины канала диффузионного барьера к его диаметру от 0,5 до 80, что определено экспериментально, позволяет измерять концентрацию кислорода в газовой смеси от 0.1 ppm до 100%.

Новый технический результат, достигаемый заявленным изобретением, заключается в возможности измерять концентрацию кислорода в газовой смеси от 0.1 ppm до 100%.

Изобретение иллюстрируется рисунками, где на фиг. 1 изображен общий вид сенсора; на фиг. 2 - зависимость изменения тока ячейки с диффузионным барьером в виде капилляра от напряжения при анализе газовых смесей с содержаниями кислорода от 0.22 до 20.5%, температура 700°С; на фиг. 3 - зависимость изменения предельного тока ячейки с ячейки с диффузионным барьером в виде капилляра от концентрации кислорода при температуре от 600 до 700°С; на фиг. 4 - зависимость изменения тока ячейки с диффузионным барьером в виде сквозного канала от напряжения при анализе газовых смесей с содержаниями кислорода от 0.406 до 5%(А), от 1Е-12 до 6Е-3% (В), температура 700°С; на фиг. 5 - зависимость изменения предельных токов ячейки с диффузионным барьером в виде сквозного канала от концентрации кислорода при анализе газовых смесей с малыми содержаниями кислорода от 0 до 5% (А), от 4Е-12 до 0.0105% (В) и от 4Е-12 до 1Е-4%(С), температура 700°С.

Сенсор содержит три диска 1,2,3, при этом диски 1 и 3 выполнены из кислородопроводящего твердого электролита, а безэлектродный диск 2, расположенный между ними может быть выполнен из керамического материала, который имеет коэффициент линейного расширения близкий к используемым твердым электролитам. На противоположные поверхности диска 1 нанесены платиновые электроды 4 и 5, а на противоположные поверхности диска 3 - платиновые электроды 6 и 7. Все диски газоплотно соединены между собой герметиком 8 с образованием полостей 9 и 10, при этом в полость 9 в качестве диффузионного барьера герметично входит капилляр 11, имеющий соотношение длины канала к диаметру его отверстия, равное 80, а в полость 11 - сквозной канал круглого сечения 12, соединяющий внешнюю атмосферу с полостью 11. Канал 12 выполнен в теле диска 3 и расположенных на ней электродов 6 и 7, имеет соотношение длины к диаметру, равное 0.5.

Подача напряжения на электроды 4 и 5 осуществляется от источника напряжения постоянного тока ИТ1, сила тока в цепи первой ячейки измеряется амперметром А1, а на электроды 6 и 7 - от источника ИТ2, а сила тока в этой цепи измеряется амперметром А2. Сенсор помещают в поток анализируемого газа, который омывает его наружную поверхность с электродами и по капилляру 11 и каналу 12 поступает в полости 9 и 10. Под действием напряжения постоянного тока, приложенного от источника ИТ1 к электродам 4 и 5 и от источника ИТ2 к электродам 6 и 7 происходит откачка кислорода из полостей 9 и 10 в поток анализируемого газа. Генерируемые при этом предельные токи, измеряемые амперметрами А1 и А2, отражают содержание кислорода в анализируемом газе в соответствии с уравнением 3.

В процессе измерений сенсор погружается в поток анализируемого газа, нагретого до известной температуры от 600 до 700°С. На электроды подается напряжение постоянного тока с таким расчетом, что плюс подается на наружные электроды, а минус - на внутренние. Анализируемый газ омывает наружные электроды сенсора, через капилляр 11 и канал 12 за счет диффузии поступает в полости 9 и 10 сенсора и омывает внутренние электроды обоих ячеек. За счет напряжения, приложенного к электродам, идет откачка кислорода из полостей 9 и 10 в поток анализируемого газа. На внутренних электродах ячейки с диффузионным барьером в виде капилляра с диаметром сечения 0.25 мм и длиной канала 20 мм протекает реакция:

а на наружных электродах ячеек идет реакция:

С увеличением напряжения, подаваемого на электроды 4 и 5, ток стабилизируется и при дальнейшем увеличением напряжения перестает расти. Полученный ток является предельным током, а его величина связана с концентрацией кислорода в анализируемом газе уравнением (3):

где: D(кислород) - коэффициент диффузии кислорода газа в азоте, см2/сек;

X (кислород) - мольная доля кислорода в смеси с азотом;

S - площадь сечения капилляра, см2;

P - общее давление газовой смеси, атм

T - температура анализа, °К;

L - длина капилляра, см;

R - универсальная газовая постоянная = 8,314 462 618 153 24 Дж / (моль⋅К);

F - постоянная Фарадея = 96 485,332 123 310 0184 Кл/моль.

Аналогичная зависимость между генерируемым предельным током и концентрацией кислорода наблюдается в ячейке с диффузионным барьером в виде сквозного канала с диаметром сечения 1 мм и длиной канала 0.5 мм.

Наличие в сенсоре двух диффузионных барьеров, имеющих соотношения длины канала диффузионного барьера к его диаметру от 0,5 до 80, что подтверждено фиг. 2-5, позволяет измерять концентрацию кислорода в газовой смеси от 0.1 ppm до 100%.

Похожие патенты RU2795670C1

название год авторы номер документа
Способ определения концентрации монооксида и диоксида углерода в анализируемой газовой смеси с азотом 2021
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
  • Дунюшкина Лилия Адибовна
RU2779253C1
Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси 2020
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
  • Чуйкин Александр Юрьевич
RU2735628C1
Амперометрический способ измерения концентрации закиси азота в газовых смесях 2016
  • Калякин Анатолий Сергеевич
  • Дёмин Анатолий Константинович
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
RU2627174C1
Способ определения ионного числа переноса твердых электролитов с протонной проводимостью 2020
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
  • Дунюшкина Лилия Адибовна
RU2750136C1
Амперометрический способ измерения концентрации оксида азота в воздухе 2020
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
  • Дунюшкина Лилия Адибовна
RU2750138C1
Амперометрический способ измерения концентрации кислорода в газовых смесях 2017
  • Калякин Анатолий Сергеевич
  • Демин Анатолий Константинович
  • Волков Александр Николаевич
RU2654389C1
Амперометрический способ измерения концентрации водорода в воздухе 2022
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
RU2788154C1
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ 2014
  • Калякин Анатолий Сергеевич
  • Фадеев Геннадий Иванович
  • Демин Анатолий Константинович
  • Волков Александр Николаевич
RU2563325C1
Амперометрический способ измерения концентрации оксида азота в газовой смеси с азотом 2020
  • Калякин Анатолий Сергеевич
  • Волков Александр Николаевич
  • Волков Кирилл Евгеньевич
RU2752801C1
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ АММИАКА В АЗОТЕ 2015
  • Калякин Анатолий Сергеевич
  • Демин Анатолий Константинович
  • Волков Александр Николаевич
RU2583162C1

Иллюстрации к изобретению RU 2 795 670 C1

Реферат патента 2023 года Сенсор для измерения концентрации кислорода в газовой смеси

Изобретение относится к аналитической технике, в частности к сенсорам для анализа газовых сред и может быть использовано для измерения концентрации кислорода в газовых смесях в широком диапазоне. Сенсор содержит три диска, крайние из которых выполнены из кислородопроводящего твердого электролита, имеют электроды на противоположных поверхностях, между дисками содержится безэлектродный керамический диск, все диски газоплотно соединены между собой с образованием двух полостей, в одну из которых в качестве диффузионного барьера герметично входит капилляр, имеющий соотношение длины канала к его диаметру, равное 80, а в другую - капилляр в виде сквозного канала круглого сечения, выполненного в теле соответствующего крайнего диска и расположенных на ней электродов, имеющий соотношение длины канала к его диаметру, равное 0.5. Сенсор имеет возможность измерять концентрацию кислорода в газовой смеси от 0.1 ppm до 100%. 5 ил.

Формула изобретения RU 2 795 670 C1

Сенсор для измерения концентрации кислорода в газовой смеси, содержащий три диска, крайние из которых выполнены из кислородопроводящего твердого электролита, имеют электроды на противоположных поверхностях, между дисками содержится безэлектродный керамический диск, все диски газоплотно соединены между собой с образованием двух полостей, в одну из которых в качестве диффузионного барьера герметично входит капилляр, имеющий соотношение длины канала к его диаметру, равное 80, а в другую – капилляр в виде сквозного канала круглого сечения, выполненного в теле соответствующего крайнего диска и расположенных на ней электродов, имеющий соотношение длины канала к его диаметру, равное 0.5.

Документы, цитированные в отчете о поиске Патент 2023 года RU2795670C1

Уточная крестомотальная машина 1936
  • Зелихин П.М.
SU55143A1
ТРЕХФАЗНЫЙ ПЛАЗМАТРОН 0
SU191013A1
СПОСОБ ИЗМЕРЕНИЯ КИСЛОРОДОСОДЕРЖАНИЯ И ВЛАЖНОСТИ ГАЗА 2013
  • Калякин Анатолий Сергеевич
  • Фадеев Геннадий Иванович
  • Горбова Елена Владимировна
  • Демин Анатолий Константинович
  • Волков Александр Николаевич
RU2540450C1
Устройство для испытания выключателей на разрывную мощность 1938
  • Акодис М.М.
SU57012A1
JP 2000074874 A, 14.03.2000
JP 2007240152 A, 20.09.2007.

RU 2 795 670 C1

Авторы

Калякин Анатолий Сергеевич

Волков Александр Николаевич

Горшков Максим Юрьевич

Дунюшкина Лилия Адибовна

Даты

2023-05-05Публикация

2023-01-12Подача