Способ исследования кинетики взаимодействия водорода с образцом из металла или сплава и установка для его осуществления Российский патент 2024 года по МПК G01N7/14 

Описание патента на изобретение RU2817517C1

Группа изобретений относится к относится к области измерительной техники и экспериментального изучения физико-химических свойств металлов и сплавов, а именно к технике определения скорости взаимодействия водорода с металлами и сплавами в широком диапазоне температур и может быть использована в материаловедении и машиностроительной промышленности для оценки скорости коррозионного воздействия водорода и других газов.

Известно несколько способов определения растворимости водорода в металлах и сплавах и установок для их реализации. К ним относятся способ и установка для анализа водорода методом форвакуумного нагрева [1]. Установка включает реакционную кварцевую трубку объёмом 50-60 см3 для исследуемого образца, которая присоединена к U-образному ртутному манометру и к вакуум-насосу. Согласно известному способу после вакуумирования проводят нагрев образца, помещенного в кварцевую трубку, в результате чего водород выделяется в заранее откалиброванный объём установки, что вызывает изменение давления в системе, величина которого позволяет вычислить объём выделившегося водорода. Недостатком способа и устройства является погрешность измерений, связанная с потерями части растворенного водорода при переносе наводороженного образца в установку. Отсутствует также возможность непосредственного исследования кинетики взаимодействия водорода с образцом металла или сплава.

Известны установка и способ для анализа выделяемого из материала водорода методом глубоковакуумного нагрева [2, 3]. Установка состоит из форвакуумного насоса, ртутного диффузионного стеклянного насоса, ручного сборного насоса с тремя калиброванными объёмами для измерения количества выделившегося газа, и печи с кварцевой трубкой, которая соединена с системой шлифом. Загрузка образца в систему производится с помощью ртутного подъёмника-лифта. Количество выделившегося водорода определяется по величине заполнения калиброванных объёмов, связанных со сборным насосом. Установка и способ позволяют за счет подъёмника-лифта проводить исследование содержания водорода в серии образцов. Недостатками установки и способа являются использование больших объёмов токсичной ртути, а также погрешность измерений, связанная с потерями части растворенного водорода при переносе наводороженного образца в установку и невозможность непосредственного исследования кинетики взаимодействия водорода с образцом металла или сплава.

Известны также установки для определения количества растворенного водорода методом «несущего газа» с анализом содержания выделенного из твердого материала водорода, который осуществляют различными способами: по теплопроводности [4], выделением водорода путем пропускания через палладиевый фильтр [5], определением водорода кулонометрическим титрованием [6], по теплопроводности смеси водорода и несущего газа [4], и др. Так, например, в смеси окиси углерода, азота и водорода теплопроводность водорода в семь раз выше, чем у других газов, что позволяет откалибровать платиновый катарометр по процентному содержанию водорода в смеси. Для выделения водорода из сплава образцы плавят в оловянной ванне в кварцевом тигле [4]. После загрузки образца в печь в течение 5 минут собирают выделяющийся газ, который откачивают ртутно-диффузионными насосами в сосуд, где они перемешиваются магнитной мешалкой. В калиброванном объёме измеряют давление, затем соединяют объём с измерительной ячейкой с катарометром, в которой определяют теплопроводность смеси и, соответственно, содержание водорода.

Недостатками способа и устройства для его осуществления являются погрешность измерений, связанная с потерями части растворенного водорода при переносе наводороженного образца в установку и невозможность непосредственного исследования кинетики взаимодействия водорода с образцом металла или сплава.

Все известные способы и устройства предназначены для определения количества растворенного водорода в образцах металлов и сплавов, но не позволяют изучать процесс поглощения водорода материалом образцов, т.е. исключают возможность исследования кинетики взаимодействия водорода с образцами из металла или сплава как в процессе поглощения водорода, так и процессе выделения водорода материалом образцов с высокой точностью измерения параметров процесса и исключения погрешностей исследования.

Кроме того, определение содержания водорода проводят для образцов, полученных заранее в других установках. При этом при переносе образца, содержащего растворенный водород, в установку для определения растворимости водорода часть растворённого газа теряется за счет десорбции, что существенно снижает точность измерения величины растворимости водорода в металле или сплаве, что не обеспечивает высокую точность измерений и не исключает погрешности исследований.

Близких аналогов способов и устройств для их осуществления, которые бы решали задачу комплексного исследования кинетики взаимодействия водорода с образцом из металла или сплава, не обнаружено.

Технический результат заключается в создании способа и устройства для исследования кинетики взаимодействия водорода с образцом из металла или сплава как в процессе поглощения водорода, так и в процессе выделения водорода материалом образца с высокой точностью измерения параметров и исключением погрешностей исследований.

Технический результат достигают способом, включающим измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре, а также измерение скорости выделения водорода материалом исследуемого образца при нагревании в печи, при этом измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре проводят путем предварительного термостатирования в печи инертного и исследуемого образцов, помещенных в первую и вторую изолированные реакционные камеры, соответственно, вакуумирования реакционных камер, камер и заполнения их водородом, измерения начального значения показаний дифференциального манометра, измерения величины отклонения показаний дифференциального манометра за период времени процесса поглощения водорода, введения шприцем-дозатором водорода во вторую реакционную камеру с исследуемым образцом до изменения показаний дифференциального манометра до начального значения, с последующим расчетом текущего значения скорости поглощения водорода материалом исследуемого образца по величине отношения текущего значения объёма добавленного водорода к текущему значению длительности процесса поглощения водорода, причем общую скорость поглощения водорода определяют по отношению объема поглощенного водорода к длительности процесса.

Измерения скорости выделения водорода материалом наводороженного исследуемого образца при нагревании в печи проводят путем измерения величины отклонения показаний дифференциального манометра за период времени процесса выделения водорода, выведения шприцем-дозатором водорода из второй реакционной камеры с исследуемым образцом до изменения показаний дифференциального манометра до начального значения, с последующим расчетом текущего значения скорости выделения водорода материалом исследуемого образца по величине отношения текущего значения объёма выведенного водорода к текущему значению длительности процесса выделения водорода, причем общую скорость выделения водорода определяют по отношению объема выведенного водорода к длительности процесса.

Указанный технический результат достигается при осуществлении указанного способа с помощью установки, включающей электронагревательную печь, дифференциальный манометр для измерения давления газов, систему создания и измерения вакуума, две изолированные реакционные камеры, в одну из которых помещен инертный образец, равный по объему исследуемому образцу, который помещен во вторую реакционную камеру, а дифференциальный манометр выполнен с возможностью измерения разности давления между двумя реакционными камерами, а также винтовой шприц-дозатор с водородом, соединенный со второй реакционной камерой.

На фиг.1 показана установка, с помощью которой осуществляют заявляемый способ, где:

1 - двухпозиционный кран;

2 - первая реакционная камера;

3 - вторая реакционная камера;

4 - кварцевая лодочка для инертного образца;

5 - кварцевая лодочка для исследуемого образца;

6 - электронагревательная печь;

7 - винтовой шприц-дозатор;

8 - дифференциальный манометр;

9 - осушительная емкость с поглотителем водяных паров;

10 - термометр;

11 - манометр;

12 - система экранирования теплового излучения печи.

На фиг.2 представлены исходные данные для расчета скорости поглощения водорода пористым титаном (пример 1), на фиг.3 - зависимость объёма поглощенного водорода образцом сплава на основе железа от длительности процесса (пример 2).

В установке размещены две независимые реакционные камеры 2, 3, одна из которых предназначена для сравнения текущего давления с давлением в другой камере, в которой находится исследуемый образец металла, реагирующего с водородом, размещенный в лодочке 5. При этом в камере 2 в лодочку 4 помещен инертный образец того же объёма, но не реагирующий с водородом. Обе реакционные камеры 2, 3 размещены в электронагревательной печи 6. Согласно заявленному способу разность давлений водорода между двумя реакционными камерами 2, 3 измеряют дифференциальным манометром 8, работающим в режиме датчика отклонения перепада давлений от нулевого значения. Дифференциальный манометр 8 работает по схеме индикации нулевого перепада давления между камерами 2 и 3.

При появлении отклонения от нуля проводят балансировку давлений (с фиксацией момента балансировки) за счет ввода или вывода части газа из реакционного объёма в ручном или автоматизированном режиме с помощью термостатированного винтового шприца-дозатора 7. Термостатированный винтовой шприц-дозатор 7, наполовину заполненный водородом, предназначен для компенсации отклонения перепада давлений между реакционными камерами 2, 3. Балансное количество вводимого или отводимого водорода соответствует поглощенному или выделенному водороду исследуемым образцом в течение всего эксперимента с учетом «кривой свободного хода установки».

В реакционных камерах 2, 3 предусмотрена система 12 экранировки излучения высокотемпературной печи для защиты узлов герметизации (не показаны) и двухпозиционных кранов 1 подачи водорода. Также имеется осушительная емкость 9 с поглотителем водяных паров, которые могут образоваться при взаимодействии водорода с примесными оксидами в исследуемом образце.

Использование двух реакционных камер 2, 3 с образцами одинакового объёма позволяет повысить чувствительность установки за счет того, что измеряют только разность давлений между указанными камерами для исключения чисто температурного повышения давления, а количество поглощенного или выделившегося водорода из-за протекающих процессов взаимодействия материала исследуемого образца и водорода соответствует изменению объёма водорода в шприце-дозаторе 7 с учетом температуры и общего давления в нём.

Компенсация перепада давления между реакционными камерами 2, 3 с помощью шприца-дозатора 7 позволяет проводить измерения как в случае поглощения водорода материалом исследуемого образца, так и в случае выделения водорода из материала образца, что расширяет область применения устройства.

Способ осуществляется следующим образом.

В кварцевую лодочку 4 помещают инертный образец, а в лодочку 5 - исследуемый образец, и устанавливают лодочки 4, 5 в реакционные камеры 2 и 3 соответственно. Обе реакционные камеры 2, 3, а также шприц-дозатор 7 вакуумируют, промывают и заполняют водородом, затем герметизируют с помощью двухпозиционных кранов 1, после чего на них накладывают электронагревательную печь для быстрого разогрева зоны эксперимента и включают отсчет времени.

В процессе разогрева установки с образцами и после достижения заданной температуры периодически осуществляют компенсацию разности давлений с помощью шприца-дозатора 7 в ручном или автоматическом режиме. При этом регулярно фиксируют текущее время эксперимента, температуру печи 6, температуру, давление и объём водорода в шприце-дозаторе 7.

Пример 1

Пример осуществления способа исследования кинетики взаимодействия водорода с образцом титановой губки.

В реакционную камеру 3 установки поместили 250 мг образца титановой губки с удельной поверхностью 0,7 м2/г, далее реакционные объёмы 2 и 3 продували чистым водородом с целью удаления кислорода и азота, после чего закрыли двухпозиционные краны 1. Затем замерили начальное показание дифференциального манометра 8 при начальном перепаде давлений между реакционными камерами 2 и 3. Далее включили электропечь 6 для нагревания реакционных камер 2 и 3, и в процессе разогрева проводили синхронные замеры показаний манометра 8 и температуры в реакционных камерах 2, 3 до достижения значения t=600°С с фиксацией длительности эксперимента. При этом при появлении отклонений показаний манометра 8 от начального среднего значения из-за протекающего процесса поглощения водорода с помощью шприца-дозатора в реакционной камере, заполненного чистым водородом, производили ввод в камеру 3 водород в таком количестве, чтобы показания манометра 8 вернулись к исходному среднему значению. При этом измеряли количество введенного водорода, температуру, длительность процесса выделения водорода и абсолютное давление в установке. Температурное расширение водорода учитывали расчетным путем.

Результаты проведенных измерений представлены в таблице на фиг.2.

По данным результатов, приведенным в таблице на фиг.2, в качестве примера сделан расчет скорости поглощения водорода в интервале температур 580-590°С. За время (43,5-41,5) = 2 минуты (120 с) титановая губка весом 0,25г*0,7 м2/г = 0,175 м2 поглотила 2*89,28*10-6 г водорода. Поскольку вес 1 мл водорода составляет 2*106мкг/22400=89,28 мкг (микрограмм), скорость поглощения водорода на единицу площади образца в указанном температурном интервале составила: = 8,5*10-6 г/с*м2.

Пример 2

Пример осуществления способа исследования кинетики взаимодействия водорода с образцом сплава на основе железа.

В качестве образца использовали стружку сплава авиационного назначения следующего состава (% масс.): Fe-59,80; Cr - 18,3; Co - 9,88; Ni - 2,09; Mo - 2,98; остальные компоненты - до баланса 100%. Вес стружки - 0,321 г, удельная поверхность образца 7*10-5 м2/г. В реакционной камере поддерживали температуру 1000°С.

Аналогично примеру 1 проводили насыщение образца сплава водородом с измерением количества введенного шприцем водорода. Количество поглощенного водорода (мл) от длительности процесса (мин) представлено уравнением: У=0,0182Х-0,1114 и графиком на фиг.3.

По результатам проведенного эксперимента была вычислена скорость поглощения водорода на единицу площади образца, которая составила 0,02 г/с*м2.

Заявляемые способ и устройство обладают также следующими преимуществами перед известными:

- позволяют проводить измерения скорости поглощения, и/или скорости выделения;

- позволяют проводить измерение количества растворенного водорода в образце, предварительно наводороженном в другой установке двумя способами:

а) при постепенном разогреве образца;

б) при растворении образца в жидкости (расплавленном олове или алюминии);

- позволяют проведение исследования в ручном и автоматическом режиме.

Источники информации

1. Баталин Г.И., Белобородова Е.А., Казимиров В.П. Термодинамика и строение жидких сплавов на основе алюминия. М.: Металлургия, 1983. 160 с.

2. Морозов А.Н. Заводская лаборатория, 1952, №10, с. 1168.

3. Борисов А.Я. Сборник «Экспериментальная техника». Изд-во АН СССР, 1959, с.465.

4. Schields B.M., Chipman J., Grant N.J., J. of Met., 1953, №2, p.180

5. Abresch K., Dobner W., Lemm G. Archiv f. Eisenhüttenw, v.31, 1960. №6, S.351.

6. Giegerl E. Archiv f. Eisenhüttenw, v.33, 1962. №7, S.453.

Похожие патенты RU2817517C1

название год авторы номер документа
Установка для исследований процесса взаимодействия взрывоопасных, и/или токсичных, и/или химически агрессивных газов с металлами, сплавами и материалами 2023
  • Углев Николай Павлович
  • Пойлов Владимир Зотович
  • Погудин Олег Владимирович
  • Черников Максим Сергеевич
RU2814441C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДОРОДА В ТИТАНЕ 2012
  • Лидер Андрей Маркович
  • Ларионов Виталий Васильевич
  • Гаранин Георгий Викторович
RU2498282C1
Устройство для хемилюминесцентного анализа 2021
  • Букатин Антон Сергеевич
  • Вартанян Тигран Арменакови
  • Гладских Игорь Аркадьевич
  • Дададжанов Далер Рауфович
  • Дададжанова Антонина Ивановна
  • Киричек Ксения
  • Орлова Анна Олеговна
  • Сапунова Анастасия Алексеевна
  • Торопов Никита Александрович
RU2781351C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ МЕТАЛЛА ПОДЗЕМНЫХ ТРУБОПРОВОДОВ К СТРЕСС-КОРРОЗИИ 2002
  • Орлов П.С.
  • Шкрабак В.С.
  • Мокшанцев Г.Ф.
  • Шкрабак В.В.
  • Голдобина Л.А.
  • Гусев В.П.
  • Шкрабак Р.В.
RU2222000C2
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ МЕТАЛЛИЧЕСКОГО УРАНА 2011
  • Маслов Герман Иванович
  • Котова Оксана Григорьевна
  • Салихов Сергей Галлямович
  • Ушков Александр Васильевич
RU2483292C2
Установка и способ исследования кинетики химических реакций и определения теплофизических свойств различных соединений газометрическим методом 2018
  • Дубихин Валерий Васильевич
  • Галюк Олег Степанович
  • Яновский Леонид Самойлович
  • Варламова Наталья Ивановна
  • Казаков Анатолий Иванович
  • Молоканов Александр Александрович
RU2707986C2
СПОСОБ ОПРЕДЕЛЕНИЯ АГРЕССИВНОСТИ КОТЛОВОЙ ВОДЫ И ИНТЕНСИВНОСТИ МЕЖКРИСТАЛЛИТНОЙ КОРРОЗИИ 2007
  • Голдобина Любовь Александровна
  • Гусев Валерий Павлович
  • Орлов Павел Сергеевич
  • Шкрабак Владимир Степанович
RU2366928C2
Способ определения водорода в металлах и сплавах, в том числе в интерметаллидах 1990
  • Пчельников Анатолий Петрович
  • Козачинский Александр Эдуардович
  • Скуратник Яков Борисович
  • Папроцкий Сергей Александрович
  • Маркосьян Галина Нерсесовна
  • Молодов Альберт Игнатьевич
  • Лосев Владимир Васильевич
SU1779986A1
Способ определения концентрации водорода в титановом сплаве 2023
  • Хлыбов Александр Анатольевич
  • Углов Александр Леонидович
  • Рябов Дмитрий Александрович
RU2813467C1
Пневматический демпфер 1990
  • Блюмкин Лев Борисович
SU1779845A1

Иллюстрации к изобретению RU 2 817 517 C1

Реферат патента 2024 года Способ исследования кинетики взаимодействия водорода с образцом из металла или сплава и установка для его осуществления

Группа изобретений относится к области измерительной техники и экспериментального изучения физико-химических свойств металлов и сплавов, а именно к определению скорости взаимодействия водорода с металлами и сплавами в широком диапазоне температур, и может быть использована в материаловедении и машиностроительной промышленности для оценки скорости коррозионного воздействия водорода и других газов. Способ исследования кинетики взаимодействия водорода с образцом из металла или сплава включает измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре, а также измерение скорости выделения водорода материалом исследуемого образца при нагревании в печи. Измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре проводят путем предварительного термостатирования в печи инертного и исследуемого образцов, помещенных в первую и вторую изолированные реакционные камеры соответственно, вакуумирования реакционных камер, подачи в эти камеры заданного количества водорода, измерения снижения показаний дифференциального манометра в единицу времени и объема вводимого шприцем-дозатором водорода во вторую реакционную камеру с исследуемым образцом до выравнивания давлений между реакционными камерами с последующим расчетом текущего значения скорости поглощения водорода материалом исследуемого образца по величине отношения текущего значения давления к текущему значению длительности процесса. Общую скорость поглощения водорода определяют по отношению объема поглощенного водорода к длительности процесса, а измерения скорости выделения водорода материалом наводороженного исследуемого образца при нагревании в печи проводят путем измерения роста показаний дифференциального манометра в единицу времени, измерения объема водорода, удаляемого из второй реакционной камеры шприцем-дозатором, с последующим расчетом текущего значения скорости выделения водорода материалом исследуемого образца по величине отношения текущего давления к текущему значению длительности процесса. Общую скорость выделения водорода определяют по отношению объема выделенного водорода к длительности процесса. Техническим результатом является создание способа и устройства для исследования кинетики взаимодействия водорода с образцом из металла или сплава как в процессе поглощения водорода, так и в процессе выделения водорода материалом образца с высокой точностью измерения параметров и исключением погрешностей исследований. 2 н.п. ф-лы, 3 ил.

Формула изобретения RU 2 817 517 C1

1. Способ исследования кинетики взаимодействия водорода с образцом из металла или сплава, включающий измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре, а также измерение скорости выделения водорода материалом исследуемого образца при нагревании в печи, при этом измерение текущего значения скорости поглощения водорода материалом исследуемого образца при постоянной температуре проводят путем предварительного термостатирования в печи инертного и исследуемого образцов, помещенных в первую и вторую изолированные реакционные камеры соответственно, вакуумирования реакционных камер, подачи в эти камеры заданного количества водорода, измерения снижения показаний дифференциального манометра в единицу времени и объема вводимого шприцем-дозатором водорода во вторую реакционную камеру с исследуемым образцом до выравнивания давлений между реакционными камерами с последующим расчетом текущего значения скорости поглощения водорода материалом исследуемого образца по величине отношения текущего значения давления к текущему значению длительности процесса, причем общую скорость поглощения водорода определяют по отношению объема поглощенного водорода к длительности процесса, а измерения скорости выделения водорода материалом наводороженного исследуемого образца при нагревании в печи проводят путем измерения роста показаний дифференциального манометра в единицу времени, измерения объема водорода, удаляемого из второй реакционной камеры шприцем-дозатором, с последующим расчетом текущего значения скорости выделения водорода материалом исследуемого образца по величине отношения текущего давления к текущему значению длительности процесса, причем общую скорость выделения водорода определяют по отношению объема выделенного водорода к длительности процесса.

2. Установка для исследования кинетики взаимодействия водорода с образцом из металла или сплава, включающая электронагревательную печь, дифференциальный манометр для измерения давления газов, систему создания и измерения вакуума, две изолированные реакционные камеры, в одну из которых помещен инертный образец, равный по объему исследуемому образцу, который помещен во вторую реакционную камеру, а дифференциальный манометр выполнен с возможностью измерения разности давления между двумя реакционными камерами, а также винтовой шприц-дозатор с водородом, соединенный со второй реакционной камерой.

Документы, цитированные в отчете о поиске Патент 2024 года RU2817517C1

US 20220221439 A1, 14.07.2022
JP 57197446 A, 03.12.1982
СПОСОБ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ВОДОРОДА В КОНТЕЙНЕРЕ 2002
  • Пратт Стивен Д.
  • Мутхусвами Сивакумар
  • Келли Рональд Дж.
  • Пенниси Роберт У.
RU2293967C2
Способ определения сорбции и устройство для его осуществления 1988
  • Фомкин Анатолий Алексеевич
  • Гусев Владимир Юрьевич
SU1732233A1
CN 106644872 A, 10.05.2017.

RU 2 817 517 C1

Авторы

Углев Николай Павлович

Пойлов Владимир Зотович

Трасковский Всеволод Алексеевич

Даты

2024-04-16Публикация

2023-12-26Подача