Изобретение относится к технологии неорганических веществ, в частности к способам получения магнезиальных продуктов и может быть использовано в химической промышленности при получении фосфата магния из сапонитового глиняного шлама.
Известен способ получения оксида магния (патент РФ № 2078039, опубл. 1997.04.27) сущность способа заключается в том, что исходный магнезит растворяют в азотной кислоте и проводят обработку суспензии аммиаком при pH 5,8-6,0 для осаждения примесей. Далее осадок гидроксидного шлама отделяют от раствора, из которого осаждают гидроксид магния при pH 10,0-10,5. После отделения осадка проводят его отмывку таким образом, чтобы содержание кальция в гидроксиде магния на этой операции изменялось в пределах 0,03-0,25 мас.%.
Недостатком данного способа является то, что азотная кислота в качестве экстрагента недостаточно хорошо растворяет магний, содержащийся в магнезите, а образовавшийся осадок примесей сам по себе является отходом этого производства.
Известен способ комплексной переработки серпентинита (патент РФ № 2097322, опубл. 1997.11.27), серпентинит разлагают серной кислотой оптимальной концентрации 20-50%. На первой стадии получают осадок аморфного кремнезема двуокиси кремния и неразложившихся магнитных минералов. Эту смесь подвергают электромагнитной сепарации с выделением концентрата магнетита и хромита и чистой двуокиси кремния. Полученный фильтрат нейтрализуют до pH 7-8,5, при этом из него осаждаются гидроокислы металлов хром-никель-железистого состава. Из оставшегося фильтрата методом карбонизации получают карбонат магния, который прокаливанием переводят в окись магния. Из конечного раствора выпариванием получают сульфат натрия.
Недостатком способа является то, что не обеспечивается замкнутый цикл производства оксида магния, используемые в технологии серная кислота и гидроксид натрия необратимо расходуются и выводятся в виде сульфата натрия. Последующая экстракция кремнезема едкой щелочью и осаждение геля кремнекислоты соляной кислотой и хлористым аммонием повышает себестоимость готовой продукции. Выделение окиси магния также связано с многостадийностью процесса.
Известен способ получения оксида магния из серпентинита по замкнутому циклу (авторское свидетельство СССР № 2011638, опубл. 1994.04.30), способ получения MgO из серпентинита заключается в том, что последний сплавляют с сульфатом аммония при 250-400°C. Продукт сплавления выщелачивают водой, после чего из полученного раствора сульфата магния удаляют примеси Ca, Fe, Ni, Co, Si, Ca и т. д. осаждением их в виде гидроксидов фракционной нейтрализацией. Осадок отделяют фильтрацией, а из фильтрата обработкой его аммиаком сначала осаждают Mg(OH)2 при pH 10,0 - 10,5, а затем при pH 11,0 - 11,5 карбонатом аммония осаждают карбонат магния. После этого оба осадка отмывают от сульфат-иона и подвергают термообработке при 750°С с получением оксида магния. При этом полученный на стадии осаждения Mg(OH)2 раствор (NH4)2SO4 упаривают, гранулируют и направляют на стадию спекания с серпентинитом, а выделившийся на этой стадии аммиак конденсируют и рециркулируют на стадию осаждения Mg(OH)2. Степень осаждения Mg(OH)2 составляет 98-100%.
Недостатком способа является большой расход энергоресурсов, связанный с большой массой материалов, обрабатываемых методом плавления: масса расплавляемого материала в 4-6 раз превосходит массу перерабатываемого серпентинита - продукт для плавления состоит как из серпентинита, так и сульфата аммония при соотношении весов от 1:3 до 1:5.
Известен способ получения магния из кремнийсодержащих отходов (патент РФ № 2240369, опубл. 2004.11.20), способ получения магния из кремнийсодержащих отходов, включает измельчение отходов и разделение их на фракции, выщелачивание солянокислым раствором с получением хлормагниевой суспензии, разделение раствора и осадка, очистку и концентрирование раствора, многостадийное обезвоживание раствора с получением безводного хлормагниевого сырья для электролиза, электролиз с получением магния, хлора и электролита, конверсию хлора с получением хлорида водорода и направление его на стадии подготовки сырья для электролиза, возврат электролита на стадию подготовки сырья для электролиза. В предложенном способе кремнеземистый осадок после отделения раствора промывают от хлор-иона и подвергают термообработке, затем смешивают с восстановителем и обрабатывают хлором с получением тетрахлорида кремния. Термообработку и обработку хлором кремнеземистого осадка проводят в кипящем слое. Обработку хлором кремнеземистого осадка проводят в расплаве хлоридов щелочных металлов. Перед смешением с восстановителем кремнеземистый осадок подвергают магнитной и электростатической сепарации с получением кремнеземистого концентрата. В качестве восстановителя используют пековый или нефтяной кокс. Перед смешиванием с восстановителем кремнеземистый осадок измельчают до крупности менее 0,20 мм, обеспечивается снижение количества отходов, образующихся при получении магния, уменьшение загрязнения окружающей среды, получение из отходов нового товарного продукта - тетрахлорида кремния.
Недостатком процесса является большое количество неиспользуемых отходов, так из 1000 кг кремнеземистых асбестовых отходов извлечено 208,4 кг магния, что составляет ~21%, остальное количество отходов - кремнеземистый осадок, содержащий, в основном, соединения кремния, магния, железа, никеля, кобальта, алюминия и др. - не утилизируется, т.е. направляется в хранилище твердых отходов, что загрязняет окружающую среду, использование отходов полидисперсного состава при наличии в них асбестового волокна приводит к ухудшению качества получаемых растворов хлорида магния, что приводит к усложнению процесса очистки раствора хлорида магния, т.к. при фильтрации ткань забивается асбестовыми волокнами.
Известен способ получения оксида магния (Лебедев В.А. Седых В.И. Металлургия магния. Учебное пособие Екатеринбург: УГТУ-УПИ, 2010. 174 с.), который осуществляется следующим способом: приготовление кислотно-солевого раствора, направляемого на выщелачивание серпентина, осуществляется в цикле очистки отходящих газов первой и второй стадии обезвоживания карналлита. Очистка газов от пыли и хлористого водорода проводится в аппаратах мокрой газоочистки с использованием в качестве абсорбента промывной воды. Полученный кислотно-солевой раствор с концентрацией НС1 15-16% поступает на выщелачивание. Окончательная очистка отходящих газов от хлора происходит путем поглощения его хлористым железом. Хлорное железо, образующееся в результате реакции, является исходным сырьем для получения пигментов на основе оксида железа. Перед выщелачиванием измельченный серпентинит подвергают классификации и магнитной сепарации, при этом для выщелачивания используют магнитную фракцию серпентинита, обогащенную железом и никелем. Выщелачивание серпентина кислотно-солевым раствором осуществляется в реакторах при температуре 90-105°C. Полученная в результате выщелачивания суспензия разделяется путем фильтрования на кислый раствор хлоридов и осадок аморфного кремнезема. Раствор передают на передел нейтрализации и очистки, а осадок аморфного кремнезема направляют на производство товарной продукции (жидкое стекло, тетрахлорид кремния, сорбенты, наполнители). Для нейтрализации соляной кислоты и осаждения примесей из раствора хлорида магния используется тонко дисперсный брусит Mg(OH)2. Полученная пульпа разделяется в отстойнике, сгущенная часть фильтруется. Раствор хлорида магния после концентрирования направляется на передел синтеза карналлита, а железоникелевый осадок после соответствующей подготовки может быть направлен в металлургическое производство. Концентрированный раствор MgCl2, подогретый до 110-115°С, поступает в реактор, в котором смешивается с гранулированным отработанным электролитом. Насыщенный раствор поступает в отстойник, в котором происходит очистка раствора от нерастворимых включений, поступивших с электролитом. Осветленный раствор подается на вакуумкристаллизационную установку, в которой происходит образование кристаллов карналлита. Охлажденная пульпа направляется на операции сгущения и фильтрации с получением синтетического карналлита, содержащего 31,8% MgCl2.
Недостатком процесса является потребность в подготовке отходящих газов и последующего приготовления кислотно-солевого раствора, а также ввода хлорного железа для очистки отходящих газов от хлора. Использование технически сложного оборудования, необходимого для предварительных операций перед процедурой выщелачивания, таких как классификация и магнитная сепарация, при этом для выщелачивания используют магнитную фракцию серпентинита, обогащенную железом и никелем.
Известен способ термического обогащения минерала сапонита и получение соединений магния (Умиров Ф.Э., Пирназаров Ф.Г., Умиров У.Ф., Темиров У.Ш. International Journal of Advanced Technology and Natural Sciences. 2022. vol.3(4), p. 15-18), принятый за прототип, который осуществляется следующим способом, сапонитовый минерал в течение 2 часов обжигают при температуре 600-900°С, обожженный сапонитовый минерал обрабатывали соляной кислотой, далее к раствору хлоридов кальция и магния добавляли раствор дигидрофосфата аммония (NH4)H2PO4. Полученный раствор встряхивали при 80°С в течение 20 минут, полученный раствор охлаждали в естественных условиях до образования белого осадка магний-аммоний фосфата.
Недостатком процесса является предварительная термообработка сапонитового минерала, спекание сапонита приводит к уменьшению удельной поверхности глины на 20%, что существенно снизит активационный кислотный процесс на стадии перехода хлоридов кальция и магния в раствор.
Техническим результатом является получение магний-аммонийного фосфата выщелачиванием соляной кислотой из сапонитового шлама.
Технический результат достигается тем, что в качестве исходного сырья используют сапонитовый мелкодисперсный глинопорошок, который при температуре от 95 до 105°С перемешивают в течение от 15 до 20 мин, далее полученную суспензию фильтруют с получением твердой фазы – осадка аморфного кремнезема, который направляют на производство жидкого стекла и жидкой фазы – кислого раствора хлоридов, который направляют на нейтрализацию аммиаком концентрацией 13% до достижения pH = 7, полученную пульпу направляют на фильтрование, с получением твердой фазы – железоникелевого осадка, который направляют на металлургическое производство и жидкой фазы – раствора хлорида магния, который при температуре от 105 до 115°С смешивают с 1М гидрофосфатом натрия, а затем фильтруют с получением твердой фазы – магнийаммонийного фосфата, которую используют в качестве добавки к тампонажным растворам, и жидкой фазы – соляного раствора, который направляют на очистку или выпаривание с получением хлорида натрия.
Способ получения магний-аммонийного фосфата из сапонитового шлама, поясняется следующими фигурами:
Фиг. 1 – принципиальная схема способа получения магний-аммонийного фосфата;
Фиг. 2 – график зависимости выхода аморфного кремнезёма от концентрации соляной кислоты;
Фиг. 3 – график зависимости выхода гидроксида железа (III) от концентрации аммиака;
Фиг. 4 – график зависимости выхода магний-аммонийного фосфата от концентрации гидрофосфата натрия.
Способ осуществляется следующим образом. Исходное сырье представляет собой сапонитовый мелкодисперсный глинопорошок, исходным составом, масс.%: SiO2–52,3; MgO–22,12; Fe2O3–9,9 %; Al2O3 – 5,7; CaO – 4,6; прочее – 5,38.
Исходное сырье загружается в реактор (фиг. 1), где при температуре от 95 до 105°С смешивается с 15% соляной кислотой в соотношении 1:4. После добавления раствора соляной кислоты происходит процесс перемешивания в течение от 15 до 20 мин. Далее полученная в результате выщелачивания суспензия разделяется путем фильтрования на кислый раствор хлоридов и осадок аморфного кремнезема. Осадок аморфного кремнезёма направляют на производство жидкого стекла, тетрахлорида кремния, сорбентов, наполнители.
Кислый раствор хлоридов направляется на нейтрализацию аммиаком концентрацией 13% в количестве от 40 до 45 мл для достижения pH = 7 в реактор, где происходит выпадение осадков гидроксидов железа и никеля. Полученную пульпу направляют на фильтрование с получением железо-никелевого осадка, который направляется на металлургическое производство и раствора хлорида магния. Раствор хлорида магния направляют в реактор, где при температуре от 105° до 115°С смешивают с 1М гидрофосфатом натрия в соотношении 1:2. Затем продукт смешения отправляют на фильтрацию с получением твердой фазы магний-аммонийного фосфата, которая используется в качестве добавки к тампонажным растворам, и жидкой фазы соляного раствора. Соляной раствор после фильтрации направляется на очистку или выпаривание с получением хлорида натрия.
Способ поясняется следующими примерами.
Пример 1. 5 грамм навески сапонитовой глинисто-пластичной массы обрабатывают 20 мл соляной кислоты 5% масс. при температуре от 90°С в течение 5 минут в реакторе с постоянным перемешиванием. Затем, полученная пульпа фильтруется на кислый раствор хлоридов и сгущенную массу аморфного кремнезема. Результаты обработки сапонита представлены в таблице 1. Выход аморфного кремнезёма составил 62%, фиг. 2. Протекание реакции затруднено ввиду низкой реакционной способности 1% соляной кислоты с сапонитом.
Таблица 1 – Результаты по выщелачиванию магний-аммонийного фосфата из сапонита
Пример 2. 5 грамм навески сапонитовой глинисто-пластичной массы обрабатывают 20 мл соляной кислоты 10% масс. при температуре 95°С в течение 10 минут в реакторе с постоянным перемешиванием. Затем, полученная пульпа фильтруется на кислый раствор хлоридов и сгущенную массу аморфного кремнезема. Результаты обработки сапонита представлены в таблице 1. Выход аморфного кремнезёма составил 79%, фиг. 2.
Пример 3. 5 грамм навески сапонитовой глинисто-пластичной массы обрабатывают 20 мл соляной кислоты 15% масс. при температуре 100°С в течение 15 минут в реакторе с постоянным перемешиванием. Затем, полученная пульпа фильтруется на кислый раствор хлоридов и сгущенную массу аморфного кремнезема. Результаты обработки сапонита представлены в таблице 1. Выход аморфного кремнезёма составил 83%, фиг. 2.
Пример 4. 5 грамм навески сапонитовой глинисто-пластичной массы обрабатывают 20 мл соляной кислоты 20% масс. при температуре от 105°С в течение 20 минут в реакторе с постоянным перемешиванием. Затем, полученная пульпа фильтруется на кислый раствор хлоридов и сгущенную массу аморфного кремнезема. Результаты обработки сапонита представлены в таблице 1. Выход аморфного кремнезёма составил 99%, фиг. 2.
Пример 5. 5 грамм навески сапонитовой глинисто-пластичной массы обрабатывают 20 мл соляной кислоты 25% масс. при температуре 110°С в течение 25 минут в реакторе с постоянным перемешиванием. Затем, полученная пульпа фильтруется на кислый раствор хлоридов и сгущенную массу аморфного кремнезема. Результаты обработки сапонита представлены в таблице 1. Выход аморфного кремнезёма составил 99%, фиг.2.
Пример 6. Отфильтрованную пульпу обрабатывают при постоянном перемешивании в течение 5 минут 40 мл раствора аммиака 3% масс. до достижения pH=7 в реакторе. Полученная суспензия фильтруется на нейтральный раствор хлорида магния и сгущенную массу гидроксида железа (III) Зависимость выхода гидроксида железа (III) представлена в таблице 1. Выход гидроксида железа (III) составил 51%, фиг. 3.
Пример 7. Отфильтрованную пульпу обрабатывают при постоянном перемешивании в течение 10 минут 40 мл раствора аммиака 5% масс. до достижения pH=7 в реакторе. Полученная суспензия фильтруется на нейтральный раствор хлорида магния и сгущенную массу гидроксида железа (III). Зависимость выхода гидроксида железа (III) представлена в таблице 1. Выход гидроксида железа (III) составил 59%, фиг.3.
Пример 8. Отфильтрованную пульпу обрабатывают при постоянном перемешивании в течение 15 минут 40 мл раствора аммиака 10% масс. до достижения pH=7 в реакторе. Полученная суспензия фильтруется на нейтральный раствор хлорида магния и сгущенную массу гидроксида железа (III). Зависимость выхода гидроксида железа (III) представлена в таблице 1. Выход гидроксида железа (III) составил 69%, фиг. 3.
Пример 9. Отфильтрованную пульпу обрабатывают при постоянном перемешивании в течение 20 минут 40 мл раствора аммиака 13% масс. до достижения pH 7 в реакторе. Полученная суспензия фильтруется на нейтральный раствор хлорида магния и сгущенную массу гидроксида железа (III). Зависимость выхода гидроксида железа (III) представлена в таблице 1. Выход гидроксида железа (III) составил 87%, фиг. 3.
Пример 10. Отфильтрованную пульпу обрабатывают при постоянном перемешивании в течение 25 минут 40 мл раствора аммиака 15% масс. до достижения pH = 7 в реакторе. Полученная суспензия фильтруется на нейтральный раствор хлорида магния и сгущенную массу гидроксида железа (III). Зависимость выхода гидроксида железа (III) представлена в таблице 1. Выход гидроксида железа (III) составил 85%, фиг. 3.
Пример 11. 50 мл раствора хлорида магния смешивают со 100 мл 0,1М гидрофосфатом натрия в реакторе при температуре 100°С и перемешивают в течение 5 минут. Полученная суспензия фильтруется на щелочной раствор хлорида натрия и сгущенную массу магний-аммонийного фосфата. Зависимость выхода магний-аммонийного фосфата представлена в таблице 1. Выход магний-аммонийного фосфата составил 35%, фиг. 4.
Пример 12. 50 мл раствора хлорида магния смешивают со 100 мл 0,5М гидрофосфатом натрия в реакторе при температуре от 105°С и перемешивают в течение 10 минут. Полученная суспензия фильтруется на щелочной раствор хлорида натрия и сгущенную массу магний-аммонийного фосфата. Зависимость выхода магний-аммонийного фосфата представлена в таблице 1. Выход магний-аммонийного фосфата составил 47%, фиг. 4.
Пример 13. 50 мл раствора хлорида магния смешивают со 100 мл 1М гидрофосфатом натрия в реакторе при температуре 110°С и перемешивают в течение 15 минут. Полученная суспензия фильтруется на щелочной раствор хлорида натрия и сгущенную массу магний-аммонийного фосфата Зависимость выхода магний-аммонийного фосфата представлена в таблице 1. Выход магний-аммонийного фосфата составил 61%, фиг. 4.
Пример 14. 50 мл раствора хлорида магния смешивают со 100 мл 1,5М гидрофосфатом натрия в реакторе при температуре 115°С и перемешивают в течение 20 минут. Полученная суспензия фильтруется на щелочной раствор хлорида натрия и сгущенную массу магний-аммонийного фосфата. Зависимость выхода магний-аммонийного фосфата представлена в таблице 1. Выход магний-аммонийного фосфата составил 78%, фиг. 4.
Пример 15. 50 мл раствора хлорида магния смешивают со 100 мл 2М гидрофосфатом натрия в реакторе при температуре 120°С и перемешивают в течение 25 минут. Полученная суспензия фильтруется на щелочной раствор хлорида натрия и сгущенную массу магний-аммонийного фосфата. Зависимость выхода магний-аммонийного фосфата представлена в таблице 1. Выход магний-аммонийного фосфата составил 82%, фиг. 4.
Получение магния из сапонитовой глинисто-пластичной массы при обработке соляной кислотой концентрацией 1% при температуре от 90 до 105°С, при концентрации раствора аммиаком 3%, при обработке 0,1М гидрофосфатом натрия приводит к неполному растворению магния из сапонита и вследствие этого к незначительному выходу целевого продукта, а при получении магния из сапонита при обработке соляной кислотой концентрацией 20% при температуре 90-105°С, при концентрации раствора аммиаком 15%, при обработке 2,0М гидрофосфатом натрия вести не целесообразно ввиду отсутствия значительно влияния на выход целевого продукта.
Предлагаемый способ получения магний-аммонийного фосфата из сапонитового шлама с использованием соляной кислоты концентрацией 15% при температуре от 90 до 105°С в течение 15 минут в реакторе с постоянным перемешиванием, при добавлении раствора аммиака концентрацией 15% и дальнейшей обработке 2М раствором гидрофосфата натрия позволит получать товарный продукт, магний-аммонийный фосфат из экологических отходов горнодобывающего предприятия с достижением выхода целевого продукта 90%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ МАГНИЙ-АММОНИЙ-ФОСФАТА ИЗ СТОЧНЫХ ВОД | 2022 |
|
RU2792126C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ МАГНИЙ-АММОНИЙ-ФОСФАТА ИЗ СТОЧНЫХ ВОД | 2021 |
|
RU2775771C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА | 2007 |
|
RU2356836C1 |
СПОСОБ КОМПЛЕКСНОЙ ОБРАБОТКИ СЕРПЕНТИНИТОВ | 2008 |
|
RU2407704C2 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ РУДЫ, СОДЕРЖАЩЕЙ СИЛИКАТЫ МАГНИЯ | 2006 |
|
RU2332474C2 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА С ПОЛУЧЕНИЕМ ЧИСТОГО ДИОКСИДА КРЕМНИЯ | 2003 |
|
RU2243154C2 |
СПОСОБ ОЧИСТКИ ОБОРОТНОЙ ВОДЫ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ ОТ САПОНИТСОДЕРЖАЩЕГО МАТЕРИАЛА И ПЕСКА | 2021 |
|
RU2780569C1 |
СПОСОБ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА | 2005 |
|
RU2292300C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИН-ХРОМИТОВОГО РУДНОГО СЫРЬЯ | 2013 |
|
RU2535254C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИЛИКАТОВ МАГНИЯ | 2005 |
|
RU2290457C2 |
Изобретение относится к получению получении магний-аммонийного фосфата из сапонитового глиняного шлама. Получение магний-аммонийного фосфата включает подачу исходного сырья в реактор с постоянным перемешиванием для смешения с соляной кислотой, нейтрализацию аммиаком и смешение с гидрофосфатом натрия, а также фильтрацию. В качестве исходного сырья используют сапонитовый мелкодисперсный глинопорошок, который при температуре от 95 до 105°С перемешивают в течение от 15 до 20 мин. Полученную суспензию фильтруют с получением твердой фазы – осадка аморфного кремнезема и жидкой фазы – кислого раствора хлоридов, который направляют на нейтрализацию аммиаком концентрацией 13% до достижения pH = 7. Полученную пульпу фильтруют с получением твердой фазы – железоникелевого осадка и жидкой фазы – раствора хлорида магния, который при температуре от 105 до 115°С смешивают с 1М гидрофосфатом натрия, а затем фильтруют с получением твердой фазы – магний-аммонийного фосфата и жидкой фазы – соляного раствора, который направляют на очистку или выпаривание с получением хлорида натрия. Способ позволяет получить магний-аммонийный фосфат выщелачиванием соляной кислотой из сапонитового шлама. 4 ил., 1 табл., 15 пр.
Способ получения магний-аммонийного фосфата из сапонитового шлама, включающий подачу исходного сырья в реактор для смешения с соляной кислотой с постоянным перемешиванием, нейтрализацию аммиаком и смешение с гидрофосфатом натрия, фильтрацию, отличающийся тем, что в качестве исходного сырья используют сапонитовый мелкодисперсный глинопорошок, который при температуре от 95 до 105°С перемешивают в течение от 15 до 20 мин, далее полученную суспензию фильтруют с получением твердой фазы – осадка аморфного кремнезема, который направляют на производство жидкого стекла и жидкой фазы – кислого раствора хлоридов, который направляют на нейтрализацию аммиаком концентрацией 13% до достижения pH = 7, полученную пульпу направляют на фильтрование с получением твердой фазы – железоникелевого осадка, который направляют на металлургическое производство, и жидкой фазы – раствора хлорида магния, который при температуре от 105 до 115°С смешивают с 1М гидрофосфатом натрия, а затем фильтруют с получением твердой фазы – магний-аммонийного фосфата, который используют в качестве добавки к тампонажным растворам, и жидкой фазы – соляного раствора, который направляют на очистку или выпаривание с получением хлорида натрия.
УМИРОВ Ф.Э | |||
и др | |||
Термическое обогащение минерала сапонита и получение соединений магния, International Journal of Advanced Technology and natural Sciences, 2022, vol.3(4), p.15-18 | |||
КОМПЛЕКСНОЕ МАГНИЙ-ФОСФАТНОЕ УДОБРЕНИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2009 |
|
RU2411223C1 |
Способ переработки отходов солевых растворов, содержащих смесь сульфатов и нитратов аммония и натрия | 2019 |
|
RU2716048C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ МАГНИЙ-АММОНИЙ-ФОСФАТА ИЗ СТОЧНЫХ ВОД | 2021 |
|
RU2775771C1 |
Способ получения магнийаммонийфосфорных удобрений | 1981 |
|
SU971831A1 |
EP 3740455 B1, 26.10.2022. |
Авторы
Даты
2024-05-03—Публикация
2023-09-18—Подача