СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА Российский патент 2009 года по МПК C01F5/30 C25C3/04 C01G49/00 C01G53/09 

Описание патента на изобретение RU2356836C1

Изобретение относится к области металлургии и химической технологии неорганических веществ и может быть использовано для комплексной переработки серпентинита с получением товарных продуктов: диоксида кремния, соединений магния - хлорида магния и/или карналлита, металлического магния, железо- и никельсодержащих концентратов.

Известен способ переработки серпентинита /Пат. РФ №2241670, МПК C01F 5/30, С25С 3/04, C01B 7/01; 33/14, 21.07.2007/. Серпентинит выщелачивают соляной кислотой, пульпу разделяют фильтрованием на диоксид кремния и хлормагниевый раствор. Диоксид кремния хлорируют с получением тетрахлорида кремния, из которого парофазным гидролизом выделяют аэросил. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата. Из очищенного раствора MgCl2 и отработанного электролита синтезируют карналлит, который после обезвоживания используют для электролитического производства магния.

Недостатками данной технологии является получение хлоридных отходов, содержащих FeCl3, AlCl3, CrCl3, MgCl2, MnCl2 и др., образующихся при хлорировании диоксида кремния. Существуют определенные трудности для разделения смеси хлоридов и получения индивидуальных соединений. Кроме того, при очистке хлормагниевых растворов получаемый железоникелевый концентрат в прокаленном виде содержит не более 2,4% NiO, что затрудняет его переработку с получением индивидуальных соединений никеля. При такой очистке не происходит разделения соединений железа и никеля.

Известен способ комплексной переработки серпентинита с использованием серной кислоты /Пат. РФ №2097322, МПК C01B 33/142, C01F 5/02, C01D 5/02, 27.11.97/. Этот способ не пригоден для получения магния металлического электролизом, для производства которого применяют безводные соединения хлорида магния и/или карналлита.

Известен способ комплексной переработки серпентинита с получением чистого диоксида кремния /Пат. РФ №2243154, МПК CO1B 33/12, 25.02.2003/. Серпентинит выщелачивают солянокислым раствором, содержащим 10-21% HCl, при температуре 60-100°С и Ж:Т=3-10:1 в течение 2-6 ч с получением диоксида кремния и хлормагниевого раствора. Хлормагниевый раствор очищают от примесей нейтрализацией в две стадии: на первой - бруситом при 80-90°С и рН 3,5-4,0, на второй - раствором гидроксида натрия до рН 6-7 с добавлением сульфида или гидросульфида натрия. Недостатками данного способа являются большие потери никеля с осадком I стадии очистки, достигающие 75-80%. Степень осаждения железа составляет ~80%. На второй стадии получен концентрат, содержащий 4,0-4,5% NiO и до 75% Fe2O3. При этом не происходит разделения железа и никеля, в связи с тем что гидроксидные соединения железа являются хорошим коллектором для соединений никеля.

Наиболее близким аналогом является способ комплексной переработки силикатов магния /Пат. РФ №2290457, МПК С25С 3/04, C01F 5/32, опубл. 27.12.2006. Бюл. №36/ - прототип.

Сущность способа заключается в следующем. Измельченный серпентинит классифицируют на классы и подвергают магнитной сепарации для удаления кальцийсодержащих минералов. Магнитную фракцию выщелачивают соляной кислотой. Полученный раствор хлорида магния отделяют от аморфного кремнезема, который промывают и сушат. Раствор хлорида магния очищают от примесей с получением железоникелевого концентрата. Очищенный раствор хлорида магния и молотый отработанный калиевый электролит используют для производства синтетического карналлита, который обезвоживают и подают на электролиз. В результате электролиза получают металлический магний, хлор и отработанный электролит. Электролит используют для синтеза карналлита. Хлор конвертируют в хлористый водород, который направляют на обезвоживание карналлита. Из газов обезвоживания выделяют хлористый водород с получением соляной кислоты, используемой для выщелачивания серпентинита. Недостатком данного способа является получение железоникелевого концентрата с невысоким содержанием оксида никеля (не более 2,5% NiO).

Технический результат предлагаемого способа заключается в повышении концентрации оксида никеля при переработки железоникелевого концентрата с получением никелевого концентрата.

Технический результат достигается следующим образом. Железоникелевый концентрат дополнительно выщелачивают соляной кислотой. Образующуюся пульпу фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора выделяют соединения никеля осаждением раствором гидроксида или карбоната натрия.

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков.

«Измельченный серпентинит выщелачивают соляной кислотой, суспензию фильтруют с получением хлормагниевого раствора и диоксида кремния. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата, который отделяют от очищенного хлормагниевого раствора. Синтез карналлита ведут из очищенного хлормагниевого раствора и измельченного отработанного электролита. Полученный карналлит обезвоживают и подвергают электролизу с получением металлического магния, хлора и отработанного электролита. Электролит используют для синтеза карналлита. Хлор конвертируют в хлористый водород, который используют для обезвоживания карналлита. Из газов обезвоживания выделяют хлористый водород с получением соляной кислоты, используемой для выщелачивания серпентинита. Железоникелевый концентрат, полученный на стадии очистки хлормагниевого раствора от примесей, выщелачивают 10-15%-ной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата.

На основании проведенных исследований установлено, что при использовании соляной кислоты концентрацией менее 10% образуются растворы с низким содержанием никеля, а более 15% возрастает степень перехода железа в раствор. При температуре менее 80°С наблюдается низкая скорость процесса, возрастает его продолжительность, что приводит к неоправданным затратам. При рН менее 2 возрастает степень перехода железа в раствор, а при рН>5 процесс выщелачивания практически прекращается.

При выделении никеля из раствора при рН<8 происходит неполное осаждение никеля. Известно, что начало осаждения никеля из 1М раствора составляет 6,7, а рН полного осаждения никеля - 9,5. При этом остаточная концентрация никеля менее 10-5 М /Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С.248/.

Пример осуществления способа.

100 г железоникелевого концентрата состава, мас.%: 10,4 Fe; 0,29 Ni; 0,15 Mn; 0,25 Cr; 2,4 SiO2; 11,0 Mg; 0,68 Ca; 46,3 H2O; 61,2 п.п.п; отношение Ni/Fe=0,028, смешали со 150 мл воды, пульпу нагрели до 80°С и начали подачу соляной кислоты (1:1) до определенной величины рН. В таблице 1 приведено влияние величины рН на степень перехода в раствор соединений железа и никеля.

Как следует из полученных данных, величина рН выщелачивания оказывает влияние на степень перехода железа и никеля в раствор, а также на степень очистки никеля от железа. При рН<3,0 и >4,5 степень извлечения железа в раствор возрастает, степень очистки никеля от железа составляет 37 при рН 3,0 и 196 при рН 4,5.

При рН 3,5-4,25 степень извлечения никеля составляет 54-70%, а железо практически не переходит в раствор. Степень разделения никеля и железа составляет ~76000-185000.

Из раствора, содержащего хлориды никеля, осадили гидроксид никеля обработкой его 2н раствором NaOH до рН 8,0-8,5. При этом степень осаждения никеля составила 99,50-99,97%. Влажный осадок (60-68% Н2O; п.п.п.80-82%) содержал до 4,8-4,9% Ni или 6,1-6,2% NiO. В высушенном при 100±5°С содержание никеля увеличилось до 14,9%, а в прокаленном при 700°С - до 25%.

Таким образом, разработанная технология позволяет разделить железо и никель с получением железо- и никельсодержащих концентратов, а также вернуть хлорид магния в производство металлического магния.

Таблица 1 Влияние величины рН на степень извлечения железа и никеля в раствор Расход HCl (1:1), мл рН Анализ фильтрата Степень извлечения, % Степень очистки Ni от Fe* объем, мл концентрация, г/дм3 соотношение Ni/Fe Ni Fe Ni Fe 1,85 3,0 381 0,80 0,77 1,039 100 2,82 37 190 3,8 386 0,52 0,0001 5200 69,2 0,0003 185714 173 4,0 369 0,42 0,0001 4200 53,5 0,0003 150000 170 4,25 366 0,43 0,0002 2150 54,3 0,0007 76786 160 4,5 356 0,66 0,12 5,5 81,1 0,36 196 * Степень очистки никеля от железа рассчитывали как отношение никеля к железу в конечном растворе к такому отношению в железоникелевом концентрате.

Похожие патенты RU2356836C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 2003
  • Щелконогов А.А.
  • Муклиев В.И.
  • Гулякин А.И.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Каримов И.А.
  • Фрейдлина Р.Г.
RU2241670C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 2020
  • Мохирева Наталья Леонидовна
  • Низов Василий Александрович
  • Миролюбов Виталий Романович
RU2739046C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИЛИКАТОВ МАГНИЯ 2005
  • Щелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Гулякин Александр Илларионович
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Сабуров Лев Николаевич
  • Фрейдлина Руфина Григорьевна
  • Малиновская Елена Александровна
  • Яковлева Галина Аркадьевна
RU2290457C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА С ПОЛУЧЕНИЕМ ЧИСТОГО ДИОКСИДА КРЕМНИЯ 2003
  • Щелконогов А.А.
  • Фрейдлина Р.Г.
  • Тетерин В.В.
  • Гулякин А.И.
  • Сабуров Л.Н.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Яковлева С.А.
  • Широков Ю.И.
RU2243154C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ РУДЫ, СОДЕРЖАЩЕЙ СИЛИКАТЫ МАГНИЯ 2006
  • Фрейдлина Руфина Григорьевна
  • Гулякин Александр Илларионович
  • Овчинникова Надежда Борисовна
  • Сабуров Лев Николаевич
  • Дудина Марина Владимировна
  • Яковлева Светлана Анатольевна
RU2332474C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ КРЕМНИЙСОДЕРЖАЩИХ ОТХОДОВ 2003
  • Тетюхин В.В.
  • Шундиков Н.А.
  • Тетерин В.В.
  • Сизиков И.А.
  • Бездоля И.Н.
  • Батенев Б.Е.
  • Трифонов В.И.
RU2237111C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ ЗОЛЫ ОТ СЖИГАНИЯ БУРЫХ УГЛЕЙ 2005
  • Фрейдлина Руфина Григорьевна
  • Овчинникова Надежда Борисовна
  • Язев Владимир Дмитриевич
  • Гулякин Александр Илларионович
  • Сабуров Лев Николаевич
  • Дудина Марина Владимировна
RU2302474C2
СПОСОБ ПЕРЕРАБОТКИ РУДЫ, СОДЕРЖАЩЕЙ МАГНИЙ 2004
  • Фрейдлина Р.Г.
  • Гулякин А.И.
  • Сабуров Л.Н.
  • Овчинникова Н.Б.
RU2259320C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЙ-АММОНИЙНОГО ФОСФАТА ИЗ САПОНИТОВОГО ШЛАМА 2023
  • Зубкова Ольга Сергеевна
  • Торопчина Мария Андреевна
  • Волощук Евгений Алексеевич
RU2818698C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ СЕРПЕНТИНИТА 2003
  • Пенский А.В.
  • Шундиков Н.А.
  • Гладикова Л.А.
RU2244044C1

Реферат патента 2009 года СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА

Изобретение относится к области металлургии и химической технологии неорганических веществ. Согласно изобретению серпентинит выщелачивают соляной кислотой, суспензию фильтруют с получением хлормагниевого раствора и диоксида кремния. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата. Из очищенного хлормагниевого раствора и отработанного электролита синтезируют карналлит, его обезвоживают и подвергают электролизу с получением магния, хлора и отработанного электролита. Железоникелевый концентрат выщелачивают 10-15%-ной соляной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата. Изобретение позволяет повысить концентрацию оксида никеля в никелевом концентрате. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 356 836 C1

1. Способ комплексной переработки серпентинита, включающий его выщелачивание соляной кислотой, фильтрование суспензии с получением хлормагниевого раствора и диоксида кремния, очистку хлормагниевого раствора от примесей нейтрализацией с получением железоникелевого концентрата, синтез карналлита из очищенного хлормагниевого раствора и отработанного электролита, обезвоживание карналлита и его электролиз с получением магния, хлора и отработанного электролита, возвращаемых в процесс, отличающийся тем, что железоникелевый концентрат выщелачивают 10-15%-ной соляной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля.

2. Способ по п.1, отличающийся тем, что из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата.

Документы, цитированные в отчете о поиске Патент 2009 года RU2356836C1

СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИЛИКАТОВ МАГНИЯ 2005
  • Щелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Гулякин Александр Илларионович
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Сабуров Лев Николаевич
  • Фрейдлина Руфина Григорьевна
  • Малиновская Елена Александровна
  • Яковлева Галина Аркадьевна
RU2290457C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА С ПОЛУЧЕНИЕМ ЧИСТОГО ДИОКСИДА КРЕМНИЯ 2003
  • Щелконогов А.А.
  • Фрейдлина Р.Г.
  • Тетерин В.В.
  • Гулякин А.И.
  • Сабуров Л.Н.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Яковлева С.А.
  • Широков Ю.И.
RU2243154C2
Способ получения оксида магния 1989
  • Михаель Грилль
  • Герхард Граф
SU1828450A3
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ СЕРПЕНТИНИТА 2003
  • Пенский А.В.
  • Шундиков Н.А.
  • Гладикова Л.А.
RU2244044C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА С ПОЛУЧЕНИЕМ ЧИСТОГО ДИОКСИДА КРЕМНИЯ 2003
  • Щелконогов А.А.
  • Фрейдлина Р.Г.
  • Тетерин В.В.
  • Гулякин А.И.
  • Сабуров Л.Н.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Яковлева С.А.
  • Широков Ю.И.
RU2243154C2
Устройство для модулирования электрических колебаний 1928
  • Хайкин З.М.
SU17408A1
НОСИТЕЛЬ ЗАПИСИ, ИМЕЮЩИЙ СТРУКТУРУ ДАННЫХ, ВКЛЮЧАЮЩУЮ В СЕБЯ ГРАФИЧЕСКИЕ ДАННЫЕ, И СПОСОБ И УСТРОЙСТВО ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ 2004
  • Ким Хиунг Сун
  • Ким Биунг Дзин
  • Сео Канг Соо
RU2378721C2
US 4944928 А, 31.07.1990.

RU 2 356 836 C1

Авторы

Фрейдлина Руфина Григорьевна

Овчинникова Надежда Борисовна

Гулякин Александр Илларионович

Сабуров Лев Николаевич

Ряпосов Юрий Анатольевич

Даты

2009-05-27Публикация

2007-09-11Подача