Изобретение относится к органической химии, вирусологии и медицине, а именно к соединению: дигидрохлориду 6-бром-1-метил-5-метокси-2-(1-пиперидинометил-3-(2-диэтиламиноэтокси) карбонилиндола, обладающему высокой противовирусной анти-SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2, ранее 2019-nCoV) активностью и способу его получения, с целью создания эффективного этиотропного противовирусного лекарственного средства для расширения возможностей терапии коронавирусных заболеваний человека и животных, вызванных современными пандемическими штаммами SARS-CoV-2, в том числе, как самостоятельное средство, так и в составе композиции для терапии COVID-19.
Коронавирус (CoV), открытый в 1960 г. D. Tyrrell, а затем описанный J. Almeida и соавт.в Nature в 1968 г., долгие годы был лишь причиной острых респираторных инфекций легкого течения. Однако пандемия коронавирусной инфекции COVID-19 изменила отношение к коронавирусам и привела к поиску эффективных противовирусных средств в отношении SARS-CoV-2. Одновременно были предложены несколько стратегий разработки эффективных и безопасных лекарственных средств для лечения и профилактики коронавирусной инфекции COVID-19. Первая стратегия - это продолжение тестирования уже зарегистрированных противовирусных препаратов, активность которых в отношении РНК-вирусов была показана ранее в клинических исследованиях разного качества и дизайна: интерферон альфа (вирус гепатита С), рибавирин (вирус гепатита С, респираторно-синцитиальный вирус, возбудитель геморрагической лихорадки), лопинавир/ритонавир (ВИЧ), фавипиравир (вирус гриппа). Вторая стратегия - это использование существующих молекулярных баз данных для скрининга молекул с различным механизмом действия, которые могут оказывать действие на коронавирус: хлорохин и гидроксихлорохин, ремдесивир, умифеновир и др. Третья стратегия предполагает целевую разработку новых противовирусных препаратов на основе изучения геномной информации и патогенных свойств различных коронавирусов (The Lancet Digital Health, https://www.covid-trials.org/).
При этом, для разработки методов лечения и профилактики COVID-19 выделяют три горизонта, которые включают в себя не только этиотропное действие на SARS-CoV-2, но и лечение острого респираторного дистресс-синдрома (ОРДС), синдрома высвобождения цитокинов или цитокинового шторма (cytokine release syndrome, CRS), сопутствующих бактериальных и грибковых инфекций (der Graaf Р, Giacomini K. COVID-19: a defining moment for clinical pharmacology? PharmacolTher 2020; 108(1): 11-5).
Однако несмотря на беспрецедентное увеличение числа клинических исследований лекарственных средств для лечения данной инфекции, остается высокой частота применения лекарственных средств off label, что, безусловно, свидетельствует об острой необходимости в разработке новых эффективных подходов к профилактике и лечению COVID-19 (https://www.euro.who.int/ru/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic).
Известно лекарственное средство гидроксихлорохин, испытанное для лечения COVID-19. По данным исследований in vitro гидроксихлорохин подавлял действие вируса SARS-CoV-2, вызывающего COVID-19. По данным клинических исследований на 6-й день лечения среди пациентов, которым давали гидроксихлорохин, в сравнение с теми, кому его не давали, было меньше вирусположительных (по данным ПЦР тестов) (Р. Gautret et al., "Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial," Int. J. Antimicrob. Agents, p.105949, Mar. 2020).
Недостатком гидроксихлорохина является его высокая токсичность и большое количество нежелательных эффектов, включая помутнение зрения, тошноту, рвоту, спазмы в животе, головную боль, диарею, отек ног/лодыжек, одышку (Chatre С, Roubille F, Vernhet Н, et al. Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf 2018;41(10):919-31).
Известно лекарственное средство - тоцилизумаб, применяемое для лечения вирусной инфекции SARS-CoV-2 (AntinoriS, BonazzettiC, GubertiniG, et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev 2020; 19(7): 102564).
Недостатками тоцилизумаба являются сложность его применения - в виде раствора для подкожного введения или в виде концентрата для приготовления раствора для инфузий, а также побочные эффекты (со стороны кожи и подкожной клетчатки: часто - сыпь, зуд, крапивница; со стороны нервной системы: часто - головная боль, головокружение; со стороны сердечно-сосудистой системы: часто - повышение АД; со стороны системы кроветворения: часто - лейкопения, нейтропения, повышенный риск кандидемии).
Известно производные индол-3-карбоновой кислоты (RU 2782931 С1), со структурными формулами (1), (2), (3) в качестве водорастворимых иммуномодулирующих противоопухолевых средств:
Однако, противовирусные свойства этих производных индол-3-карбоновой кислоты в отношении вирусной инфекции SARS-CoV-2 не изучались.
Известны производные индол-3-карбоновой кислоты, обладающие противовирусной активностью (RU 2552422 С2). Данное изобретение относится к аминоалкиловым эфирам 5-метоксииндол-3-карбоновой кислоты и их фармакологически приемлемым солям общей формулы (I),
где R1 представляет собой циклогексил, С1-3 алкил; R2 представляет собой фенилтио, фенилокси, в которых фенильная группа может иметь 1-2 заместителя галогена или С1-4 алкоксигруппу, или R2 представляет собой 5-6-членный гетероциклоалкил, содержащий 1-2 гетероатома, выбранных из азота и кислорода; n равно 1, 2, 3, 4; каждый из R независимо выбирается из С1-4 алкила; за исключением соединения, указанного в формуле изобретения.
Однако, противовирусные свойства этих производных индол-3-карбоновой кислоты в отношении вирусной инфекции SARS-CoV-2 не изучались.
Самым близким (прототипом) является средство - умифеновир (арбидол, международное наименование Umifenovirum (WHO Drug Information // 2001, 25(1), 91), включенный в методические рекомендации по профилактике и лечению COVID-19 (Временные методические рекомендации. Профилактика, диагностика и лечение новой короновирусной инфекции (COVID-19). Версия 1. 29 января 2020, МЗ РФ). Умифеновир - гидрохлорид моногидрата 1-метил-2-фенилтиометил-3-карбэтокси-4-диметиламинометил-5-окси-6-броминдола (см., например, RU 2033156;) - отличается по механизму действия от многих препаратов, применяемых в лечении вирусных инфекций, таких как амантадин, ремантадин, занамивир и осельтамивир. Умифеновир оказывает специфическое противовирусное действие, ингибируя слияние вирусной оболочки с клеточными мембранами, что предотвращает проникновение вируса внутрь клеток и нарушает его репродукцию (Leneva I.A. et al. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol // Antiviral Res. 2009, 81(2), 132-140). Исследования противовирусной активности in vitro в отношении нового коронавируса SARS-CoV-2 показали, что, по сравнению с контрольной группой, умифеновир может ингибировать репликацию до 60 раз в концентрации 10-30 мкМ и значительно снижать патологическое воздействие вируса на клетки. На клетках Vero Е6 показано, что умифеновир ингибирует репликацию SARS-CoV-2 на 21,73% при 3 мкМ и на 98,93% - при 30 мкМ (Ge Y, Tian Т, Huang S, et al. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther. 2021 Apr 24; 6(1): 165. doi: 10.1038/s41392-021-00568-6. PMID: 33895786; PMCID: PMC8065335.
Недостатком прототипа является его ограниченная терапевтическая эффективность, обусловленная низкой биодоступностью и нерастворимостью в воде (Chen С, Zhang Y, Huang J, et al., Favipiravir Versus Arbidol for Clinical Recovery Rate in Moderate and Severe Adult COVID-19 Patients: A Prospective, Multicenter, Open-Label, Randomized Controlled Clinical Trial. Front Pharmacol. 2021 Sep 2; 12:683296. doi: 10.3389/fphar.2021.683296; PCT/WO2010128889A1 "Фармацевтическая композиция, включающая Арбидол в составе фосфолипидных частиц»).
Для преодоления указанного недостатка необходимо синтезировать обладающее противовирусной эффективностью водорастворимое соединение, и близкое по химической структуре к умифеновиру.
Задачей настоящего изобретения является создание нового низкомолекулярного соединения, обладающего высокой противовирусной анти-SARS-CoV-2 активностью, которое может быть использовано для создания эффективного лекарственного средства, необходимого для расширения возможностей терапии COVID-19 и других коронавирусных заболеваний.
Техническая задача решается тем, что представляет собой дигидрохлорид 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси)карбонилиндол общей формулы (II):
Соединение обладает дозо-зависимой противовирусной активностью в отношении SARS-CoV-2, концентрационные зависимости которого свидетельствуют о специфичности действия этого соединения и в концентрации 30 мкг/мл полностью ингибирует коронавирусную инфекцию SARS-CoV-2 с инфекционной активностью 106 ТЦИД50/мл, обладает ИФН-индуцирующей активностью и ингибирует синцитиеобразование, опосредованное шиповидным белком (S-гликопротеином) SARS-CoV-2. Данное соединение включает следующие этапы:
- получение 1,2-диметил-5-метокси-3-этоксикарбонилиндола, температура плавления (Тпл.) 113°С из 1,2-диметил-5-гидрокси-3-этоксикарбонилиндола;
- получение 6-бром-1,2-диметил-5-метокси-3-этоксикарбонилиндола, Тпл. 156°С, из 1,2-диметил-5-метокси-3-этоксикарбонилиндола;
- получение 6-бром-2-бромметил-1-метил-5-метокси-3-этоксикарбонилиндола, Тпл. 142°С, из 6-бром-1,2-диметил-5-метокси-3-этоксикарбонилиндола;
- получение 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-этоксикарбонилиндола, Тпл. 124-125°С из 6-бром-2-бромметил-1-метил-5-метокси-3-этоксикарбонилиндола;
- получение гидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)индол-3-карбоновой кислоты, Тпл. 236-238°С, из 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-этоксикарбонилиндола,
- получение дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси)карбонилиндола - соединения II, Тпл. 237-240°С, с характеристическими сигналами на масс-спектрометре m/z 480 - молекулярный ион, m/z 241 - двухзарядный вариант молекулярного иона, m/z 410 (M-N(C2H5)2, m/z 122,5 неидентифицированный.
Настоящее изобретение поясняется подробным описанием, примерами биологической активности соединения II, подтверждающими пригодность полученного соединения для предполагаемого применения, а также таблицами и иллюстрацией, на которой изображено:
Фиг. 1. - схема многоступенчатого получения соединения II.
Синтез производного индол-3-карбоновой кислоты (II), обладающего противовирусной активностью в отношении SARS-CoV-2 in vitro, осуществляют следующим образом.
Этапы выполнения.
1 этап.
Получение 1,2-диметил-5-метокси-3-этоксикарбонилиндола (соединения IV).
К раствору 4,66 г (0,02 моля) 1,2-диметил-5 гидрокси-3-этоксикарбонилиндола - соединения, обозначенного III, в 40,0 мл диоксана добавляют в 40,0 мл 10%-го раствора едкого натрия, затем при комнатной температуре капельно добавляют 4,0 мл диметилсульфата и перемешивают в течение 2 часов. Реакционную массу выливают в дистиллированную воду, охлаждают, выпавший осадок отфильтровывают, промывают дистиллированной водой. Выход вещества 4,65 г (94%). Температура плавления (Тпл.). 113°С.
2 этап.
Получение 6-бром-1,2-диметил-5-метокси-3-этоксикарбонилиндола (соединения V).
Смесь 4,65 г (0,0188 моля) 1,2-диметил-5-метокси-3-этоксикарбонилиндола (соединение IV), 3,36 г (0,0188 моля) бромсукцинимида в 75,0 мл четыреххлористого углерода кипятят 5 часов. Отфильтровывают осадок сукцинимида в горячем виде. Маточник слегка упаривают и охлаждают.Отфильтровывают осадок. Выход 3,3 г (54%). Тпл. 156°С.
3 этап.
Получение 6-бром-2-бромметил-1 -метил-5-метокси-3-этоксикарбонилиндола (соединения VI).
Смесь 3,3 г (0,0101 моля) 6-бром-1,2-диметил-5-метокси-3-этоксикарбонилиндола (соединение V), 1,81 г (0,0101 моля бромсукцилимида, 0,1 г перекиси бензолила в 30,0 мл четыреххлористого углерода кипятят при освещении 5 часов. После отделения сукцинимида в горячем виде и охлаждения осадок отфильтровывают. Выход 3,16 г (78%). Тпл. 142°С.
4 этап.
Получение 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-этоксикарбонилиндола (соединения VII).
Раствор 4,0 г (0,01 моля) 6-бром-2-бромметил-1-метил-5-метокси-3-этоксикарбонилиндола (соединение VI) и 1,7 г (0,02 моля) пиперидина в 50,0 мл бензола выдерживают 10-12 часов при комнатной температуре. Отфильтровывают полученный осадок бромгидрата пиперидина. Из фильтрата выделяют соединение VII. Выход 1,7 г (82,9%). Тпл. 124-125°С.
Вычислено: % С 55,75, Н 6,16, N 6,84. C19H25N2O3.
Найдено: % С 55,72, Н 6,20, N 7,02. М 417,7.
5 этап.
Получение гидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)индол-3-карбоновой кислоты (соединения VIII).
Раствор 6,0 г едкого натрия, 4,1 г (0,01 моль) 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-этоксикарбонилиндола (соединение VII), 3,0 мл воды и 60,0 мл этилового спирта кипятят 3 часа. После охлаждения добавляют 10,0 мл дистиллированной воды, подкисляют концентрированной HCl, осадок отфильтровывают. Выход 4,1 г (98%). Тпл. 236-238°С
Вычислено: % С 48,88; Н 5,31; N 6,71 C17H26BrN2O3. HCl М 417,73
Найдено: % С 48,68; Н 5,32; N 6,65
6 этап.
Получение дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси)карбонилиндола (соединения II).
1,67 г (0,004 моля) гидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)индол-3-карбоновой кислоты (соединение VIII), 3,0 мл хлористого тионила, 2 капли диметилформамида в 30,0 мл диоксана греют при 60°С 3 часа. После упаривания в вакууме осадок промывают эфиром. К полученному осадку хлорангидрида 6-бром-1-метил-5-метокси-2-(1-пиперидино)индол-3-карбоновой кислоты (соединение IX) добавляют 25,0 мл бензола и смесь 1,2 мл (0,008 моля) диэтиламиноэтанола и 1,12 мл триэтиламина в 5,0 мл бензола, греют на водяной бане 2 часа, отфильтровывают осадок гидрохлорида триэтиламина, промывают горячим бензолом. После упаривания бензола в вакууме отфильтровывают осадок основания, промывают гексаном. Дигидрохлорид получают добавлением к раствору основания в ацетоне эфира, насыщенного HCl. Получено соединение II 1,9 г (85,2%) из изопропилового спирта. Тпл. 237-240°С
ЯМР 1Н (200 MHz, ДМСО) δ 10.76 (уш с, 1Н), 10.23 (уш с, 1H), 8.03 (с, 1Н), 7.65 (с, 1H), 4.87 (д, J=4.8 Hz, 2Н), 4.76 (т, J=5.1 Hz, 2Н), 3.95 (с, 3Н), 3.93 (с, 3Н), 3.61 (м, 2Н), 3.50-3.06 (м, 8Н), 2.15-1.33 (м, 6Н), 1.26 (т, J=7.2 Hz, 6Н).
ИК (KBr, см-1): 859, 1041, 1114, 1148, 1197, 1303, 1393, 1426, 1449, 1483, 1650, 1694 (С=O), 2354-2700, 2942, 3397, 3588.
МС исследован на масс-спектрометре SHIMADZU LCMS-8040 методом прямого ввода образца в режиме сканирования при положительной ионизации (Q3+Scan). На спектрах присутствуют характеристические сигналы: m/z 480 (молекулярный ион), m/z 241, (двухзарядный вариант молекулярного иона), m/z 410 (M-N(C2H5)2, m/z 122,5 неидентифицированный.
Вычислено: % С 49,92; Н 6,56; N 7,59 С23Н36 BrCl2N3O3 М 553,37
Найдено: % С 49,89; Н 6,76; N 7,48
Определение растворимости предлагаемого соединения II.
Растворимость дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси)карбонилиндола определяли по методике, описанной в Общей Фармакопейной статье (ОФС.1.2.1.0005.15 Растворимость. Фармакопея. РФ. https://pharmacopoeia.ru/ofs-1-2-1-0005-15-rastvorimost/).
К навескам 10,0 мг, 20,0 мг, 50,0 мг, 100,0 мг и 1,0 г растертого в тонкий порошок исследуемого соединения добавляют постепенно отмеренное количество растворителя (в данном случае дистиллированной воды) до полного растворения и непрерывно встряхивают в течение 10 мин при (20±2)°С.
Навески 10,0 мг и 20,0 мг дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси)карбонилиндола полностью растворились в 0,2 мл воды; навеска 50,0 мг растворилась в 0,5 мл; навеска 100,0 мг растворилась в 1,0 мл; 1,0 г соединения растворился в 8,0 мл воды.
Исследуемое соединение относится к легко растворимым, что подтверждается в таблице 1.
Экспериментальная часть.
Пример 1 - Определение цитотоксичности разработанного соединения II.
В работе использована перевиваемая клеточная линия почки зеленой мартышки (Chlorocebus aethiops) Vero Е6, предоставленная Всероссийской коллекцией клеточных культур федерального государственного бюджетного учреждения «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации (ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России). Данная клеточная линия чувствительна к заражению вирусом SARS-CoV-2 и успешно применяется для получения вируссодержащего материала (вирусного стока), титрования инфекционной активности вируса и изучения противовирусных свойств веществ различной природы. Культивирование клеток осуществлялось в питательной среде DMEM (Gibco) с добавлением 5% эмбриональной телячьей сыворотки (ЭТС) (5 об.%), L-глутамина (2 mM) и смеси антибиотиков: (150 ед/мл пенициллина и 150 ед/мл стрептомицина).
Цитотоксичность исследуемого соединения оценивали по снижению жизнеспособности клеток в МТТ-тесте (Mossman, Т.
Rapidcolorimetricassayforcellulargrowthandsurvival:
applicationtoproliferationandcytotoxicityassays // J. Immunol. Meth. - 1983. - Vol. 65. - P. 55-6). Монослой клеток культивировали в присутствии исследуемого вещества, добавляемого в различных концентрациях, в течение 72 часов при 37°С. Затем клетки дважды отмывали средой, не содержащей сыворотки, добавляли 10,0-20,0 мкл раствора МТТ (6,0-10,0 мг/мл) и инкубировали в течение 4 часов при 37°С. Далее содержимое лунок удаляли и добавляли по 100,0 мкл диметилсульфоксида (DMSO) для растворения формазана, образующегося внутри живых клеток. Суть МТТ-теста заключается в измерении способности клеток превращать хорошо растворимый желтый бромид 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия (МТТ) в нерастворимые внутриклеточные кристаллы МТТ-формазана. Эффективность такого превращения отражает общий уровень дегидрогеназной активности клеток. Количество определяемого фотометрически (при 595/630 нм) формазана прямо пропорционально количеству живых клеток. На основании данных по оптической плотности рассчитывали 50% цитотоксическую концентрацию (СС50) соединения, т.е., ту концентрацию соединения, в присутствии которой наблюдалась гибель 50% клеток по сравнению с контролем.
Для изучаемого соединения СС50 составила 144,30 мкмоль. (83,32 мкг/мл).
Пример 2 - Определение антивирусной активности соединения II.
В эксперименте использовали перевиваемую линию клеток почки африканской зеленой мартышки (Chlorocebus aethiops) Vero Е6, которая была предоставлена Всероссийской Коллекцией клеточных культур при ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России.
Исследования выполняли с использованием пандемического штамма коронавируса человека SARS-CoV-2 с инфекционной активностью 106 ТЦИД50/МЛ (50% тканевая цитопатическая инфекционная доза) для клеток Vero Е6 (клинический изолят: hCoV-19/Russia/Moscow-PMVL-12/2020 (EPI_ISL_572398). Получен из Государственной коллекции вирусов Института вирусологии им. Д.И. Ивановского ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России.
Клетки Vero Е6 (2×105 кл./мл) помещали в 96-луночный планшет (100 мкл/лунку) и культивировали в полной питательной среде (ППС) при 37°С в атмосфере 5% СО2 в течение 24 часов до образования полного монослоя. Используя среду поддержки с 2% эмбриональной телячьей сывороткой (ЭТС), готовили 3 нетоксичные концентрации исследуемого вещества с равномерным понижением концентрации в 2 (или 3) раза и разливали в лунки с монослоем клеток Vero Е6 в объеме 100,0 мкл, занимая по 3 вертикальных ряда для каждой из 3-х концентраций (соблюдение трехкратного повтора). Далее в лунки первого горизонтального ряда «А» планшета вносили по 10,0 мкл вирусного стока и, используя многоканальную автоматическую микропипетку, проводили титрование вируса непосредственно в лунках, перенося по 10,0 мкл из горизонтального ряда «А» в ряд «В», затем из ряда «В» в ряд «С» и т.д. до ряда «G», получая, таким образом, разведения вируса от 10-1 до 10-7. Зараженные клетки инкубировали в CO2 - термостате в течение 96 часов в атмосфере 5% СО2. Контролем служил вирус в тех же разведениях без добавления разработанного средства. По истечении срока инкубации результаты реакции учитывали, просматривая лунки планшета в инвертируемом микроскопе. Титр вируса определяли в каждом вертикальном ряду. За титр вируса принимали величину, обратную последнему разведению, в котором развивалось цитопатогенное действие (ЦПД) (гибель клеток). 50%-е тканевые цитопатические инфекционные дозы (ТЦИД50) (TCID50- Median Tissue Culture Infectious Dose) рассчитывали по методу Рида-Менча для каждого разведения препарата и контрольного титрования вируса.
Таким образом, оценку противовирусной активности соединения II учитывали по снижению инфекционного титра вируса в культуре клеток Vero Е6 по цитопатическому действию (таблица 2).
Как видно из таблицы 2, исследуемое соединение обладает достоверной дозо-зависимой антивирусной активностью in vitro, что указывает на специфический характер действия соединения, и полностью подавляет репродукцию вируса SARS-CoV-2 при концентрации 52,0 мкмоль (30 мкг/мл), то есть на 6 lg TCID50. В вирусологических исследованиях принято считать удовлетворительным противовирусный эффект при действии лекарственных средств, если Δlg TCID50 ≥2,0. (см. «Руководство по проведению доклинических исследований лекарственных средств.» под ред. Миронова А.Н. Часть первая. - М.: Гриф и К, 2012. - с. 527-551).
Значение IC50 для изучаемого соединения, рассчитанное с помощью программного обеспечения GraphPadPrism 5.0, составило 1,84 мкмоль (1,06 мкг/мл). Δlgmax TCID50 равен 6,0 при концентрации соединения 52,0 мкмоль (30 мкг/мл). Значение индекса селективности (SI), рассчитанное как отношение СС50 к IC50 (SI=CC50/IC50), составило 78,6.
Пример 3 - Исследования эффективности ингибирования синцитиеобразования, индуцированного шиловидным белком (S-гликопротеином) вируса SARS-CoV-2.
Клетки 293Т котрансфицировали в течение 48 часов плазмидой, содержащей полноразмерный S-гликопротеин (pVAX-1-S-glycoprotein; Евроген, Россия), и плазмидой, кодирующей GFP (pUCHR-IRES-GFP), с помощью Transporter™ 5 transfection reagent. Далее, к выращенному в 96-луночных планшетах монослою клеток Vero Е6 добавляли различные концентрации исследуемого соединения II, после чего в лунки вносили суспензию эффекторных клеток 293T-S-GFP (соотношение клеток 3:1). Через два часа количество образовавшихся синцитиев оценивали с помощью флуоресцентной микроскопии. Эффективность подавления слияния клеток, индуцированного S-гликопротеином SARS-CoV-2, оценивали с помощью программного обеспечения GraphPadPrism 5.0 по сравнению с контролем (без внесения соединения) и выражали в процентах. Обнаружено подавление синцитиеобразования, индуцированного шиповидным белком (S-гликопротеином) SARS-CoV-2, на 89%.
Пример 4 - Определение интерферон (ИФН)-индуцирующего действия соединения II.
Эксперименты на животных проводились с соблюдением правовых и этических норм обращения с животными в соответствии с правилами, принятыми Европейской Конвенцией по защите позвоночных животных, используемых для экспериментальных и иных научных целей: European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123). Strasbourg, 1986.
Беспородные белые мыши, самцы, весом 12,0-14,0 г, были получены из Питомника ООО «НЭО Маркет» (вет. свид-во 250 №0679392). Лабораторные животные до начала исследования содержались 5 дней для адаптации при групповом содержании в клетках. Во время этого периода у животных каждый день контролировали клиническое состояние путем визуального осмотра. Животные с обнаруженными в ходе осмотра отклонениями в экспериментальные группы включены не были. Перед началом исследования животные, отвечающие критериям включения в эксперимент, были распределены на группы. Подбор животных в группы опыта проводили методом случайной выборки. Маркировка клетки кодировала пол животных, породу, дату введения препаратов, название группы.
Содержание, питание, уход за животными и выведение их из эксперимента осуществляли в соответствии с Правилами лабораторной практики, принятыми в Российской Федерации: ГОСТ 33215-2014 от 07.01.2016 г. «Руководство по содержанию и уходу за лабораторными животными. Правила оборудования помещений и организации процедур»; ГОСТ 33044-2014 Принципы надлежащей лабораторной практики.» утвержден Приказом Федерального агентства по тех. Регулированию и метрологии №1700-ст от 20.11.2014 г.), вступил в силу 01.08.2015 г.; ГОСТ 33216-2014 «Правила работы с лабораторными грызунами и кроликами»; Директива 2010/63/EU Европейского Парламента и Совета Европейского Союза от 22 сентября 2010 года по охране животных, используемых в научных целях (Соответствует требованиям Европейской экономической зоны); Протокол исследования был рассмотрен и одобрен этическим комитетом Центра.
Вирус энцефаломиокардита мышей (ВЭМК), штамм «Колумбия SK-Col-SK» с титром 107 ТЦД50/мл получен из Государственной коллекции вирусов Института вирусологии им. Д.И. Ивановского ФГБУ «НИЦЭМ им.Н.Ф. Гамалеи» Минздрава России.
Проведение определения ИФН-индуцирующей активности соединения II.
Забор крови у животных проводили через 2, 24, 48, 72 часа после однократного внутрибрюшинного введения соединения II в дозе 121,2 мкмоль/мышь (70 мкт/мышь) или дистиллированной воды (0,2 мл) (Плацебо, контроль без препарата) (по 3 мыши на каждый срок). Определение активности ИФН в сыворотке крови мышей проводили на клеточной линии мышиных фибробластов L-929, полученной из Всероссийской Коллекции клеточных культур при ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России. В работе использовали 3-х дневный монослой перевиваемой клеточной линии L-929, выращенный на среде 199 и Игла MEM (1:1) с добавлением 7% эмбриональной телячьей сыворотки (ЭТС), L-глутамина и антибиотиков: 150 ед/мл пенициллина и 150 ед/мл стрептомицина. Циркулирующий ИФН в сыворотке крови определяли при титровании проб в культуре мышиных фибробластов L-929 с использованием в качестве индикаторного вируса ВЭМК мышей, находя конечное разведение ИФН, которое защищало 50% клеток от цитопатогенного действия 100 ТЦД50 вируса.
Результаты титрования представлены в таблице 3. Показано, что соединение II обладало ИФН-индуцирующей активностью. Продукция ИФН у мышей обнаружена через 2, 24, 48 и 72 часов после введения соединения II. При этом через 2 часа после введения исследуемого вещества ИФН выявлен в сыворотке крови мышей в титре 1:40, через 24, 48 и 72 часа - в титрах 1:20.
Результаты проведенного исследования показали, что соединение II обладало ИФН-индуцирующей активностью при введении его одноразово внутрибрюшинно в дозе 121,2 мкмоль/мышь (70 мкт/мышь), причем через 2 часа после введения титр ИФН составил 40 Ед/мл, и в течение 24 - 72 часов активность ИФН определялась в титре 20 Ед/мл.
Заключение.
Полученные результаты демонстрируют наличие противовирусного эффекта в отношении SARS-CoV-2 у синтезированного соединения II в исследованиях in vitro. В концентрации 52,0 мкмоль данное соединение полностью ингибирует репродукцию вируса SARS-CoV-2 с инфекционной активностью 106 ТЦИД50/мл (50% тканевая цитопатогенная инфекционная доза). Концентрационные зависимости свидетельствуют о специфичности действия исследуемого соединения и указывают на перспективность разработанного соединения и возможность дальнейшего его изучения in vivo на экспериментальных животных.
Предлагаемое соединение II в виду его высокой активности (IC50=1,06 мкг/мл) и высокого индекса селективности (SI=78,6), а также экономической и синтетической доступности может быть рекомендовано в качестве кандидата для создания эффективного этиотропного противовирусного лекарственного средства для расширения возможностей терапии коронавирусных заболеваний человека и животных, вызванных современными пандемическими штаммами SARS-CoV-2, в том числе, как самостоятельное средство, так и в составе композиции для терапии COVID-19.
название | год | авторы | номер документа |
---|---|---|---|
ПРОИЗВОДНЫЕ ИНДОЛ-3-КАРБОНОВОЙ КИСЛОТЫ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ | 2013 |
|
RU2552422C2 |
Штамм гибридных клеток животных Mus musculus 2E1B5 - продуцент моноклонального антитела к рецептор-связывающему домену белка S вируса SARS-CoV-2 | 2021 |
|
RU2771288C1 |
ПРОИЗВОДНЫЕ ИНДОЛ-3-КАРБОНОВОЙ КИСЛОТЫ, ОБЛАДАЮЩИЕ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ | 2022 |
|
RU2782931C2 |
5'-О-(3-фенилпропионил)-N4-гидроксицитидин и его применение | 2022 |
|
RU2791523C1 |
Способ получения 5'-О-(3-фенилпропионил)-N4-гидроксицитидина | 2022 |
|
RU2791916C1 |
ПРОИЗВОДНЫЕ УРАЦИЛА, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ В ОТНОШЕНИИ SARS-COV-2 | 2021 |
|
RU2769828C1 |
Противо-SARS-CoV-2 вирусное средство Антипровир | 2020 |
|
RU2738885C1 |
Штамм гибридных клеток животных Mus musculus 1F1 - продуцент моноклонального антитела к нуклеокапсидному белку N вируса SARS-CoV-2 | 2021 |
|
RU2769817C1 |
Применение спиртового экстракта надземных частей левзеи сафровидной Rhaponticum carthamoides в качестве средства, ингибирующего активность коронавируса SARS-COV-2 и вируса простого герпеса 2 типа in vitro и способ его получения | 2023 |
|
RU2825393C1 |
Ингибитор репликации коронавируса SARS-CoV-2 на основе водного экстракта гриба Inonotus obliquus | 2020 |
|
RU2741714C1 |
Изобретение относится к вирусологии и медицине, а именно к соединению, обладающему высокой противовирусной анти-SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2, ранее 2019-nCoV) активностью. Раскрывается применение водорастворимого соединения дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси) карбонилиндола общей формулы (II), обладающего in vitro дозозависимой активностью в отношении SARS-CoV-2, которое при концентрации 30 мкг/мл полностью ингибирует коронавирусную инфекцию SARS-CoV-2. Соединение II обладает ИФН-индуцирующей активностью и ингибирует синцитиеобразование, опосредованное шиповидным белком (S-гликопротеином) SARS-CoV-2, а также обладает высокой активностью (IC50=1,06 мкг/мл) и селективностью (индекс селективности SI=78,6). Применение изобретения позволяет эффективно подавлять репродукцию SARS-CoV-2. 1 ил., 3 табл., 4 пр.
Применение водорастворимого соединения дигидрохлорида 6-бром-1-метил-5-метокси-2-(1-пиперидинометил)-3-(2-диэтиламиноэтокси) карбонилиндола общей формулы (II):
обладающего in vitro дозозависимой активностью в отношении SARS-CoV-2 и при концентрации 30 мкг/мл подавляющего репродукцию вируса SARS-CoV-2 полностью.
ПРОИЗВОДНЫЕ ИНДОЛ-3-КАРБОНОВОЙ КИСЛОТЫ, ОБЛАДАЮЩИЕ ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ | 2013 |
|
RU2552422C2 |
RU 2022112249 A, 23.06.2022 | |||
Киселёв Ю.Ю | |||
и др | |||
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора | 1921 |
|
SU19A1 |
Качественная клиническая практика, 2020, номер S4, с.75-80 | |||
Ершов Ф | |||
И | |||
и др | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
Сборник научных статей, 2012, с.80-106 | |||
RU |
Авторы
Даты
2024-06-06—Публикация
2022-12-16—Подача