Область техники, к которой относится изобретение
Изобретение относится к области биотехнологии, молекулярно-генетической диагностики, в частности к оценке однонуклеотидного полиморфизма rs3170633 (C>T) гена GCLM молекулярно-генетическим методом исследования.
Уровень техники
Глутамат-цистеинлигаза является ферментом, ограничивающим скорость синтеза глутатиона. Фермент состоит из двух субъединиц: тяжелой каталитической субъединицы и легкой регуляторной субъединицы. Ген GCLM кодирует регуляторную субъединицу. Заболевания, ассоциированные с GCLM, включают инфаркт миокарда и гемолитическую анемию из-за дефицита гамма-глутамилцистеинсинтетазы. Среди связанных с ним путей - конъюгация глутатиона [https://www.genecards.org/cgi-bin/carddisp.pl?gene=GCLM&keywords=GCLM].
Ген GCLM (Gene ID: 2730) локализован на хромосоме 1p22.1. Полиморфный вариант rs3170633, позиция chr1:93885772 (GRCh38.p14) [https://www.ncbi.nlm.nih.gov/snp/rs3170633] локализован в 3'-нетранслируемой области и характеризуется заменой C>T.
SNP rs3170633 отличается высокой функциональной значимостью. Согласно биоинформатическому ресурсу GTEx Portal, данный генетический вариант влияет на экспрессию генов GCLM, DNTTIP2, BCAR3, CCDC18-AS1, RP11-488P3.1, RP4-561L24.3 в различных органах и тканях посредством eQTL-эффектов [https://gtexportal.org/home/snp/rs3170633]. Кроме того, обнаружено его влияние на связывание с транскрипционными факторами [http://atsnp.biostat.wisc.edu/search]. Это создает потребность в создании простого в исполнении, недорого и доступного исследователям, работающим в области генетической эпидемиологии, метода идентификации однонуклеотидного полиморфизма rs3170633 (C>T) гена GCLM.
Известен способ анализа генетических вариаций в геноме человека методом секвенирования амплифицированных участков ДНК [Mardis E. R. DNA sequencing technologies: 2006–2016 // Nature protocols. – 2017. – Vol. 12. – №. 2. – P. 213-218]. Недостатками метода являются высокая стоимость оборудования и реагентов, что исключает широкое внедрение метода в экспериментальные исследования, особенно изучение заболеваний, которые требуют большого размера выборок для обеспечения высокой мощности исследований.
Известен способ анализа генетических вариаций в геноме человека методом матричноактивированной лазерной десорбционно-ионизационной масс-спектрометрии (MALDI). Метод заключается в том, анализируемая ДНК переносится на подложку, где она кристаллизуется с матрицей. Затем кристаллизованные аналиты переносят, облучают лазером, вызывая десорбцию и ионизацию молекул в вакуумной камере. Положительно заряженные ионы ДНК ускоряются и мигрируют через вакуумную трубку к высокочувствительному детектору с разной скоростью в зависимости от массы ионов, что приводит к различному времени пролета. Используя время пролета отдельных ионизированных ДНК-аналитов, система определяет массу и отображает масс-спектр, идентифицирующий различные генетические мишени [Li D. et al. MALDI-TOF mass spectrometry in clinical analysis and research // ACS Measurement Science Au. – 2022. – Vol. 2. – №. 5. – P. 385-404]. Недостатками метода являются трудоемкость, высокая стоимость оборудования, высокая стоимость эксперимента, наличие высококвалифицированного персонала.
За прототип выбран коммерческий набор по генотипированию rs3170633 (С/T) GCLM (Assay ID C___1210460_20; каталог 4351379) компании ThermoFisher. Однако генотипирование с использованием коммерческих наборов характеризуется высокой стоимостью, а информация о структуре необходимых для проведения ПЦР праймеров и аллель-специфических зондов является закрытой для исследователей, в связи с чем он не может быть воспроизведен при наличии стандартного набора оборудования и реактивов.
Таким образом, существует реальная потребность в создании быстрого, недорогого и легко воспроизводимого способа идентификации полиморфизма rs3170633 (C>T) гена GCLM, с доступной всем исследователям структурой праймеров и аллель-специфических зондов, который мог бы использоваться в качестве «рутинного» метода генотипирования в любой ПЦР-лаборатории.
Раскрытие сущности изобретения
Техническим результатом данного изобретения является разработка простого в исполнении и экономически целесообразного способа генотипирования однонуклеотидного полиморфизма rs3170633 (C>T), локализованного в позиции chr1:93885772 (GRCh38.p14) гена GCLM (Gene ID: 2730) методом полимеразной цепной реакции в режиме «реального времени» с применением аллель-специфических сигнальных зондов, содержащие флуорофоры FAM и ROX.
Технический результат достигается тем, что идентификацию аллельных вариантов rs3170633 (C>T) гена GCLM осуществляют с использованием прямого праймера rs3170633 5'-GGATGAACTGCTAGCCAACA-3' (SEQ ID NO 1), обратного праймера rs3170633 5'-TGCTCCTTTAACACTGTCTTTCT-3' (SEQ ID NO 2),
rs3170633-C-аллель-специфичного флуоресцентно-меченого зонда
5'-(FAM)CAATTGTTTACATTCCCAAAT(RTQ1)-3' (SEQ ID NO 3),
rs3170633-T-аллель-специфичного флуоресцентно-меченого зонда
5'-(ROX)CAATTGTTTATATTCCCAAAT(BHQ2)-3' (SEQ ID NO 4).
Изобретение поясняется следующей фигурой: дискриминация аллелей по локусу rs3170633 (C>T) гена GCLM при генотипировании методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов по данным величин RFU (относительные единицы флуоресценции) на амплификаторе CFX96: генотипы rs3170633-C/C показаны оранжевыми кругами, генотипы rs3170633-C/T показаны зелеными треугольниками, генотипы rs3170633-T/T показаны голубыми квадратами; черным ромбом отмечен отрицательный контроль.
Работа над дизайном олигонуклеотидов включала несколько этапов:
1) С применением открытой базы данных Ensembl genome browser 109 [https://www.ensembl.org/index.html] выбран синвенс, фланкирующий искомую однонуклеотидную замену [C/T] rs3170633 гена GCLM, и затем с помощью доступного онлайн программного обеспечения Primer3web version 4.1.0 [https://primer3.ut.ee/] подобрана последовательность олигонуклеотидов, используемых для проведения ПЦР-реакции:
прямой общий праймер rs3170633 5'-GGATGAACTGCTAGCCAACA-3' (SEQ ID NO 1),
обратный общий праймер rs3170633 5'-TGCTCCTTTAACACTGTCTTTCT-3' (SEQ ID NO 2).
Размер амплифицируемого в ходе ПЦР фрагмента гена GCLM составляет 103 пары нуклеотидов:
(GGATGAACTGCTAGCCAACATACAATAAATATATCAATTGTTTA[C/T] ATTCCCAAATTTTGAAAATACTGGGTGAAAAATCTAGAAAGACAGTGTTAAAGGAGCA).
2) Для дизайна зондов пользовались практическими рекомендациями [Basu C. (ed.). PCR primer design. – New york: Humana Press, 2015]. В реакции использовались гидролизные зонды. Последовательность зонда подбирали таким образом, чтобы он отжигался на матрицу между прямым и обратным праймерами. Каждый зонд снабжали флуорофором и гасителем флуоресценции, спектр поглощения которого соответствует длинам волн спектра флуорофора. Для гашения флуоресценции FAM пользовались гасителем RTQ1; для гашения флуоресценции ROX - гасителем BHQ2.
На основании изложенных критериев и практических рекомендаций были подобраны зонды со следующей структурой:
rs3170633-C-аллель-специфичный флуоресцентно-меченый зонд
5'-(FAM)CAATTGTTTACATTCCCAAAT(RTQ1)-3' (SEQ ID NO 3),
rs3170633-T-аллель-специфичный флуоресцентно-меченый зонд
5'-(ROX)CAATTGTTTATATTCCCAAAT(BHQ2)-3' (SEQ ID NO 4).
3) Изготовление праймеров и зондов осуществлялось в сервисном центре НПК «Синтол», Москва.
4) С помощью практических экспериментов подобраны оптимальные условия для проведения генотипирования, которые включают следующие этапы: 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 51°C в течение 1 минуты].
5) Разработанный способ был апробирован в лаборатории геномных исследований на 200 образцах ДНК здоровых индивидуумов биобанка НИИ генетической и молекулярной эпидемиологии КГМУ. Генотипирование осуществляли по данным величин RFU (относительные единицы флуоресценции) зондов с флуоресцентными красителями. По результатам генотипирования rs3170633 119 человек (59,5%) оказались гомозиготами по аллелю С (генотип С/С); 68 человек (34%) являлись гетерозиготами (генотип С/Т), 13 человек (6,5%) индивидуумов оказались гомозиготами по аллелю Т (генотип Т/Т).
6) Валидацию способа проводили методом масс-спектрометрического анализа на геномном времяпролетном масс-спектрометре MassArray analyzer 4 (Agena Bioscience). Результаты обоих способов генотипирования полностью (100% генотипов) совпали. Однако патентуемый способ генотипирования полиморфного локуса rs3170633 (C>T) гена GCLM методом ПЦР в режиме «реального времени» с применением аллель-специфических зондов позволяет значительно (на 6 часов) сократить время проведения анализа, а также снижает себестоимость анализа (в 4-5 раз).
Осуществление изобретения
Способ осуществляют следующим образом:
1. Выделение ДНК из периферической венозной крови. На первом этапе к 0,5 мл крови добавляли 0,5 мл PBS и центрифугировали 10 мин при 12 тыс. об/мин. Надосадочную жидкость сливали, добавляли 1 мл PBS и вновь центрифугировали при тех же условиях. Надосадочную жидкость сливали, добавляли 200 мкл ТЕ-буфера, пипетировали до растворения осадка и затем последовательно добавляли 10 мкл 1% раствора додецилсульфата натрия SDS и 5 мкл протеиназы К. Пробирки инкубировали в термостате при t=37°C 12 ч. В ходе второго этапа проводили четыре последовательных центрифугирования с фенолом и хлороформом согласно протоколу методики (10 мин, 8 тыс. об/мин), после чего ДНК осаждали ледяным раствором 95% этилового спирта и центрифугировали 10 мин при 14,3 тыс. об/мин. По испарении спирта ДНК растворяли в 100 мкл деионизированной дистиллированной воды. Получаемый раствор ДНК в воде имел чистоту в диапазоне А260/280=1,5-2,0 и среднюю концентрацию около 180-200 нг/мкл.
2. Подготовка образцов ДНК к генотипированию. Качество выделенной ДНК оценивали по степени чистоты и концентрации раствора на спектрофотометре NanoDrop (Thermo Fisher Scientific, США). Все анализируемые образцы ДНК были разведены деионизированной водой до концентрации 15-20 нг/мкл при А260/280=1,5-2,0.
3. Анализ полиморфизма rs3170633 (C>T) гена GCLM с помощью полимеразной цепной реакции в реальном времени с использованием аллель-специфических зондов. Для генотипирования использовали два фланкирующих праймера, прямой (SEQ ID NO 1) и обратный (SEQ ID NO 2), а также аллель-специфические зонды: С-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 3), Т-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 4).
ПЦР в «реальном времени» проводили в 25 мл реакционной смеси, содержащей 1,25 ЕД ДНК-полимеразы Hot Start Taq («Биолабмикс», Новосибирск, Россия), 20 нг ДНК, по 10 мкM каждого праймера, по 5 мкM каждого зонда, 0.03 мM каждого dNTP, 2,5 мМ MgCl2; 1xПЦР-буфер [67 мМ Tris-HCl, pH 8,8, 16,6 мМ (NH4)2SO4, 0,01% Tween-20]. Реакция амплификации состояла из стадии нагревания до 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 51°C в течение 1 минуты].
4. Генотипирование. При проведении ПЦР в амплификаторе с флуоресцентной детекцией (Bio-Rad CFX96 или аналогичном амплификаторе) генотипирование осуществляют по данным величин RFU (относительных единиц флуоресценции). Для rs3170633 (C>T) гена GCLM зонд с флуоресцентным красителем FAM соответствует аллелю С, зонд с красителем ROX - аллелю Т (фиг. 1). На фигуре видно четкое разделение образцов на кластеры, где черный ромб соответствуют отрицательному контролю, кластер оранжевых кругов – соответствует зонду с флуоресцентным красителем FAM и позволяет идентифицировать гомозигот С/С. Кластер синих квадратов соответствует зонду с красителем ROX и позволяет идентифицировать гомозигот Т/Т. Кластер зеленых треугольников соответствует накоплению уровня флуоресценции по обоим зондам и позволяет идентифицировать гетерозигот С/Т.
Резюме
Таким образом, разработан эффективный и недорогой способ для экспресс-идентификации полиморфного варианта rs3170633 (C>T) гена GCLM у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, который может быть использован в медицине при определении предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфизмов гена GCLM, а также в научных целях.
--->
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ST26SequenceListing SYSTEM "ST26SequenceListing_V1_3.dtd"
PUBLIC "-//WIPO//DTD Sequence Listing 1.3//EN">
<ST26SequenceListing productionDate="2024-05-03"
softwareVersion="2.3.0" softwareName="WIPO Sequence" fileName="Способ
генотипирования полиморфного локуса rs3170633 (C T) гена GCLM у
человека методом ПЦР в режиме «реального времени» с применением
аллель-специфических флуоресцентных зондов.xml" dtdVersion="V1_3">
<ApplicationIdentification>
<IPOfficeCode>RU</IPOfficeCode>
<ApplicationNumberText/>
<FilingDate/>
</ApplicationIdentification>
<ApplicantFileReference>2038</ApplicantFileReference>
<ApplicantName languageCode="ru">Федеральное государственное
бюджетное образовательное учреждение высшего образования "Курский
государственный медицинский университет" Министерства здравоохранения
Российской Федерации,</ApplicantName>
<ApplicantNameLatin>Kursk State Medical
University</ApplicantNameLatin>
<InventionTitle languageCode="ru">Способ генотипирования полиморфного
локуса rs3170633 (C>T) гена GCLM у человека методом ПЦР в режиме
«реального времени» с применением аллель-специфических
флуоресцентных зондов</InventionTitle>
<SequenceTotalQuantity>4</SequenceTotalQuantity>
<SequenceData sequenceIDNumber="1">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q2">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>ggatgaactgctagccaaca</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="2">
<INSDSeq>
<INSDSeq_length>23</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..23</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q4">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>tgctcctttaacactgtctttct</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="3">
<INSDSeq>
<INSDSeq_length>21</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..21</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q6">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>caattgtttacattcccaaat</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="4">
<INSDSeq>
<INSDSeq_length>21</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..21</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q8">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>caattgtttatattcccaaat</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
</ST26SequenceListing>
<---
Изобретение относится к области биотехнологии. Описан способ генотипирования полиморфного локуса rs3170633 (C>T) гена GCLM у человека методом ПЦР в режиме реального времени, включающий использование подобранных праймеров и флуоресцентно-меченых зондов. Техническим результатом данного изобретения является разработка простого в исполнении способа генотипирования однонуклеотидного полиморфизма rs3170633 (C>T), локализованного в позиции chr1:93885772 (GRCh38.p14) гена GCLM (Gene ID: 2730) методом полимеразной цепной реакции в режиме реального времени с применением аллель-специфических сигнальных зондов, содержащие флуорофоры FAM и ROX. 1 ил.
Способ генотипирования полиморфного локуса rs3170633 (C>T) гена GCLM у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, отличающийся тем, что идентификацию аллельных вариантов rs3170633 (C>T) осуществляют с использованием прямого праймера rs3170633 5'-GGATGAACTGCTAGCCAACA-3' (SEQ ID NO 1), обратного праймера rs3170633 5'-TGCTCCTTTAACACTGTCTTTCT-3' (SEQ ID NO 2), rs3170633-C-аллель-специфичного флуоресцентно-меченого зонда 5'-(FAM)CAATTGTTTACATTCCCAAAT(RTQ1)-3' (SEQ ID NO 3), rs3170633-T-аллель-специфичного флуоресцентно-меченого зонда 5'-(ROX)CAATTGTTTATATTCCCAAAT(BHQ2)-3' (SEQ ID NO 4).
Способ генотипирования полиморфного локуса rs346157 (A>G) гена C19orf53 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов | 2023 |
|
RU2808841C1 |
Способ генотипирования полиморфного локуса rs346158 (T>C) гена C19orf53 у человека методом ПЦР в режиме "реального времени" с применением аллель-специфических флуоресцентных зондов | 2023 |
|
RU2808839C1 |
WO 2005068649 A1, 28.07.2005. |
Авторы
Даты
2025-01-28—Публикация
2024-06-25—Подача