Область техники, к которой относится изобретение. Изобретение относится к области биотехнологии, молекулярно-генетической диагностики, в частности к оценке однонуклеотидного полиморфизма rs346158 (T>C) гена C19orf53 молекулярно-генетическим методом исследования.
Уровень техники. Ген C19orf53 (Gene ID: 28974) локализован на хромосоме 19p13.13. В 2020 г. учеными из Японии были открыли открыты шапероноподобные свойства C19orf53 [Tsuboyama K. et al. A widespread family of heat-resistant obscure (Hero) proteins protect against protein instability and aggregation //PLoS Biology. - 2020. - Vol. 18. - №. 3. - P. e3000632], в связи с чем данный ген подлежит активному изучению. Однонуклеотидный полиморфизм rs346158 (позиция chr19:13777672 (GRCh38.p14), https://www.ncbi.nlm.nih.gov/snp/rs346158) локализован в интроне и характеризуется заменой T>A,С. Однако, аллель A встречается с частотой <0.000001 в европейских популяциях и также характеризуется низкой частотой в других популяциях мира, в связи с чем именно замена T>C является актуальной для исследований многофакторных болезней человека. SNP rs346158 характеризуется высоким регуляторным потенциалом: влияет на уровень экспрессии генов C19orf53, MRI1, CCDC130 в различных тканях [https://gtexportal.org/home/snp/rs346158#eqtl-block], ассоциирован с модификациями гистонов [https://pubs.broadinstitute.org/mammals/haploreg/detail_v4.2.php?query=&id=rs346158], влияет на связывание ДНК с факторами транскрипции. Функциональная значимость данного генетического варианта создает потребность в создании простого в исполнении, недорогого и доступного всем исследователям, работающим в области генетической эпидемиологии, метода идентификации таргетного полиморфного варианта rs346158 (T>C) гена C19orf53.
Известен способ анализа генетических вариаций в геноме человека методом секвенирования амплифицированных участков ДНК [Mardis E.R. DNA sequencing technologies: 2006-2016 //Nature protocols. - 2017. - Vol. 12. - №. 2. - P. 213-218]. Недостатками метода являются высокая стоимость оборудования и реагентов, что исключает широкое внедрение метода в экспериментальные исследования, особенно изучение многофакторных заболеваний, которые требуют большого размера выборок для обеспечения высокой мощности исследований.
Известен способ анализа генетических вариаций в геноме человека методом матричноактивированной лазерной десорбционно-ионизационной масс-спектрометрии (MALDI). Метод заключается в том, анализируемая ДНК переносится на подложку, где она кристаллизуется с матрицей. Затем кристаллизованные аналиты переносят, облучают лазером, вызывая десорбцию и ионизацию молекул в вакуумной камере. Положительно заряженные ионы ДНК ускоряются и мигрируют через вакуумную трубку к высокочувствительному детектору с разной скоростью в зависимости от массы ионов, что приводит к различному времени пролета. Используя время пролета отдельных ионизированных ДНК-аналитов, система определяет массу и отображает масс-спектр, идентифицирующий различные генетические мишени [Li D. et al. MALDI-TOF mass spectrometry in clinical analysis and research //ACS Measurement Science Au. - 2022. - Vol. 2. - №. 5. - P. 385-404]. Недостатками метода являются трудоемкость, высокая стоимость оборудования, высокая стоимость эксперимента, наличие высококвалифицированного персонала.
За прототип выбран коммерческий набор по генотипированию rs346158 (C/T) C19orf53 (C____605292_20, каталог 4351379) компании ThermoFisher. Однако, генотипирование с использованием коммерческих наборов характеризуется высокой стоимостью, а информация о структуре необходимых для проведения ПЦР праймеров и аллель-специфических зондов является закрытой для исследователей, в связи с чем он не может быть воспроизведен при наличии стандартного набора оборудования и реактивов.
Таким образом, существует реальная потребность в создании быстрого, недорогого и легко воспроизводимого способа идентификации полиморфизма rs346158 (T>C) гена C19orf53, с доступной всем исследователям структурой праймеров и аллель-специфических зондов, который мог бы использоваться в качестве «рутинного» метода генотипирования в любой ПЦР-лаборатории.
Раскрытие сущности изобретения. Техническим результатом данного изобретения является разработка простого в исполнении и экономически целесообразного способа генотипирования однонуклеотидного полиморфизма rs346158 (T>C), локализованного в позиции chr19:13777672 (GRCh38.p14) гена C19orf53 (Gene ID: 28974) методом полимеразной цепной реакции в режиме «реального времени» с применением аллель-специфических сигнальных зондов, содержащие флуорофоры FAM и ROX.
Технический результат достигается тем, что идентификацию аллельных вариантов rs346158 (T>C) гена C19orf53 осуществляют с использованием прямого праймера rs346158 5′-AGTTTGGGGTTCACACTGCT-3′ (SEQ ID NO 1), обратного праймера rs346158 5′-CCTCTGGTCCCAGCCTCTA-3′ (SEQ ID NO 2), rs346158-T-аллель-специфичного флуоресцентно-меченого зонда 5′-(FAM)TGCCGTCTGCAAAGCA(RTQ1)-3′ (SEQ ID NO 3),
rs346158-C-аллель-специфичного флуоресцентно-меченого зонда 5′-(ROX)TGCCGTCCGCAAAGCA(BHQ2)-3′ (SEQ ID NO 4).
Изобретение поясняется следующей фигурой: дискриминация аллелей по локусу rs346158 гена C19orf53 при генотипировании методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов по данным величин RFU (относительные единицы флуоресценции) на амплификаторе CFX96: генотипы rs346158-T/T показаны оранжевыми кругами, генотипы rs346158-T/C показаны зелеными треугольниками, генотипы rs346158-C/C показаны голубыми квадратами; черным ромбом отмечен отрицательный контроль.
Работа над дизайном олигонуклеотидов включала несколько этапов:
1) С применением открытой базы данных Ensembl genome browser 109 [https://www.ensembl.org/index.html] выбран синвенс, фланкирующий искомую однонуклеотидную замену [T/C] rs346158 гена C19orf53, и затем с помощью доступного онлайн программного обеспечения Primer3web version 4.1.0 [https://primer3.ut.ee/] подобрана последовательность олигонуклеотидов, используемых для проведения ПЦР-реакции:
прямой общий праймер rs346158 5′-AGTTTGGGGTTCACACTGCT-3′ (SEQ ID NO 1),
обратный общий праймер rs346158 5′-CCTCTGGTCCCAGCCTCTA-3′ (SEQ ID NO 2).
Размер амплифицируемого в ходе ПЦР фрагмента гена C19orf53 составляет 150 пар нуклеотидов:
2). Для дизайна зондов пользовались практическими рекомендациями [Basu C. (ed.). PCR primer design. - New york : Humana Press, 2015]. В реакции использовались гидролизные зонды. Последовательность зонда подбирали таким образом, чтобы он отжигался на матрицу между прямым и обратным праймерами. Каждый зонд снабжали флуорофором и гасителем флуоресценции, спектр поглощения которого соответствует длинам волн спектра флуорофора. Для гашения флуоресценции FAM пользовались гасителем RTQ1; для гашения флуоресценции ROX - гасителем BHQ2.
На основании изложенных критериев и практических рекомендаций были подобраны зонды со следующей структурой:
rs346158-Т-аллель-специфичный флуоресцентно-меченый зонд 5′-(FAM)TGCCGTCTGCAAAGCA(RTQ1)-3′ (SEQ ID NO 3),
rs346158-С-аллель-специфичный флуоресцентно-меченый зонд 5′-(ROX)TGCCGTCCGCAAAGCA(BHQ2)-3′ (SEQ ID NO 4).
3) Изготовление праймеров и зондов осуществлялось в сервисном центре НПК «Синтол», Москва.
4) С помощью практических экспериментов подобраны оптимальные условия для проведения генотипирования, которые включают следующие этапы: 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 53°C в течение 1 минуты].
5) Разработанный способ был апробирован в лаборатории геномных исследований на 100 образцах ДНК здоровых индивидуумов биобанка НИИ генетической и молекулярной эпидемиологии КГМУ. Генотипирование осуществляли по данным величин RFU (относительные единицы флуоресценции) зондов с флуоресцентными красителями. По результатам генотипирования rs346158 71 человек (71%) оказались гомозиготами по аллелю Т (генотип Т/Т); 26 человек (26%) являлись гетерозиготами (генотип Т/С), 3 человека (3%) индивидуумов оказались гомозиготами по аллелю С (генотип С/С).
6) Валидацию способа проводили методом масс-спектрометрического анализа на геномном времяпролетном масс-спектрометре MassArray analyzer 4 (Agena Bioscience). Результаты обоих способов генотипирования полностью (100% генотипов) совпали. Однако патентуемый способ генотипирования полиморфного локуса rs346158 (T>C) гена C19orf53 методом ПЦР в режиме «реального времени» с применением аллель-специфических зондов позволяет значительно (на 6 часов) сократить время проведения анализа, а также снижает себестоимость анализа (в 4-5 раз).
Осуществление изобретения.
Способ осуществляют следующим образом:
1. Выделение ДНК из периферической венозной крови. На первом этапе к 0,5 мл крови добавляли 0,5 мл PBS и центрифугировали 10 мин при 12 тыс. об/мин. Надосадочную жидкость сливали, добавляли 1 мл PBS и вновь центрифугировали при тех же условиях. Надосадочную жидкость сливали, добавляли 200 мкл ТЕ-буфера, пипетировали до растворения осадка и затем последовательно добавляли 10 мкл 1% раствора додецилсульфата натрия SDS и 5 мкл протеиназы К. Пробирки инкубировали в термостате при t=37°C 12 ч. В ходе второго этапа проводили четыре последовательных центрифугирования с фенолом и хлороформом согласно протоколу методики (10 мин, 8 тыс. об/мин), после чего ДНК осаждали ледяным раствором 95% этилового спирта и центрифугировали 10 мин при 14,3 тыс. об/мин. По испарении спирта ДНК растворяли в 100 мкл деионизированной дистиллированной воды. Получаемый раствор ДНК в воде имел чистоту в диапазоне А260/280=1,5-2,0 и среднюю концентрацию около 180-200 нг/мкл.
2. Подготовка образцов ДНК к генотипированию. Качество выделенной ДНК оценивали по степени чистоты и концентрации раствора на спектрофотометре NanoDrop (Thermo Fisher Scientific, США). Все анализируемые образцы ДНК были разведены деионизированной водой до концентрации 15-20 нг/мкл при А260/280=1,5-2,0.
3. Анализ полиморфизма rs346158 (T>C) гена C19orf53 с помощью полимеразной цепной реакции в реальном времени с использованием аллель-специфических зондов. Для генотипирования использовали два фланкирующих праймера, прямой (SEQ ID NO 1) и обратный (SEQ ID NO 2), а также аллель-специфические зонды: Т-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 3), С-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 4).
ПЦР в «реальном времени» проводили в 25 мл реакционной смеси, содержащей 1,25 ЕД ДНК-полимеразы Hot Start Taq («Биолабмикс», Новосибирск, Россия), 20 нг ДНК, по 10 мкM каждого праймера, по 5 мкM каждого зонда, 0.03 мM каждого dNTP, 2,5 мМ MgCl2; 1xПЦР-буфер [67 мМ Tris-HCl, pH 8,8, 16,6 мМ (NH4)2SO4, 0,01% Tween-20]. Реакция амплификации состояла из стадии нагревания до 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 53°C в течение 1 минуты].
4. Генотипирование. При проведении ПЦР в амплификаторе с флуоресцентной детекцией (Bio-Rad CFX96 или аналогичном амплификаторе) генотипирование осуществляют по данным величин RFU (относительных единиц флуоресценции). Для rs346158 (T>C) гена C19orf53 зонд с флуоресцентным красителем FAM соответствует аллелю Т, зонд с красителем ROX - аллелю С (фиг. 1). На фигуре видно четкое разделение образцов на кластеры, где черный ромб соответствуют отрицательному контролю, кластер оранжевых кругов - соответствует зонду с флуоресцентным красителем FAM и позволяет идентифицировать гомозигот Т/Т. Кластер синих квадратов соответствует зонду с красителем ROX и позволяет идентифицировать гомозигот С/С. Кластер зеленых треугольников соответствует накоплению уровня флуоресценции по обоим зондам и позволяет идентифицировать гетерозигот Т/С.
Резюме.
Таким образом, разработан эффективный и недорогой способ для экспресс-идентификации полиморфного варианта rs346158 (T>C) гена C19orf53 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, который может быть использован в медицине при определении наследственной предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфизмов гена C19orf53, а также в научных целях.
Изобретение относится к области биотехнологии, молекулярно-генетической диагностики, и может быть использовано в медицине при определении наследственной предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфного варианта rs346158 (T>C) гена C19orf53. Предложен способ генотипирования полиморфного локуса rs346158 (T>C) гена C19orf53 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, предусматривающий проведение ПЦР с использованием специально подобранных праймеров: прямого 5′-AGTTTGGGGTTCACACTGCT-3′ и обратного 5′-CCTCTGGTCCCAGCCTCTA-3′, и зондов c флуорофорами: Т-аллель-специфичного флуоресцентно-меченого зонда 5′-(FAM)TGCCGTCTGCAAAGCA(RTQ1)-3′ и C-аллель-специфичного флуоресцентно-меченого зонда 5′-(ROX)TGCCGTCCGCAAAGCA(BHQ2)-3′ в амплификаторе с детекцией флуоресценции. Изобретение позволяет расширить арсенал способов генотипирования полиморфных вариантов гена C19orf53, способ отличается простотой и точностью. 1 ил.
Способ генотипирования полиморфного локуса rs346158 (T>C) гена C19orf53 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, отличающийся тем, что идентификацию аллельных вариантов rs346158 (T>C) гена C19orf53 осуществляют с использованием прямого праймера rs346158 5′-AGTTTGGGGTTCACACTGCT-3′ (SEQ ID NO 1), обратного праймера rs346158 5′-CCTCTGGTCCCAGCCTCTA-3′ (SEQ ID NO 2), rs346158-T-аллель-специфичного флуоресцентно-меченого зонда 5′-(FAM)TGCCGTCTGCAAAGCA(RTQ1)-3′, rs346158-C-аллель-специфичного флуоресцентно-меченого зонда 5′-(ROX)TGCCGTCCGCAAAGCA(BHQ2)-3′ (SEQ ID NO 4).
CN 104220876 A, 17.12.2014 | |||
US 9506117 B2, 29.11.2016 | |||
СПОСОБ ИДЕНТИФИКАЦИИ ПОЛИМОРФИЗМА R287Q В 8 ЭКЗОНЕ ГЕНА ЦИТОЗОЛЬНОЙ ЭПОКСИДГИДРОЛАЗЫ У ЧЕЛОВЕКА | 2006 |
|
RU2346053C2 |
Бочарова Ю | |||
А | |||
Исследование ассоциаций трѐх полиморфных вариантов гена глутатионсинтазы (GSS) c риском развития ишемического инсульта | |||
Научные результаты биомедицинских исследований | |||
Способ восстановления спиралей из вольфрамовой проволоки для электрических ламп накаливания, наполненных газом | 1924 |
|
SU2020A1 |
Бушуева О | |||
Ю | |||
Роль генов, кодирующих шапероны семейства Hero, |
Авторы
Даты
2023-12-05—Публикация
2023-10-19—Подача