Изобретение относится к области рент- геноинтерферометрических исследований несовершенств кристаллов и может быть использовано для определения дилатацион- ных искажений в почти совершенных кристаллах, применяемых в экспериментальной технике и производстве полупроводниковых приборов.
Цель изобретения - однозначное определение местоположений дилатационных несовершенств и знака деформации в исследуемых монокристаллах.
На фиг. 1 показаны направления падения первичного пучка в двухкристальном интерферометре; на фиг. 2 - ход лучей в случаях падения первичного пучка со стороны первого или второго кристаллов двухкри- стального интерферометра, когда точки отсчета обратных решеток не совпадают одна с другой; на фиг. 3 - ход лучей в случаях падения первичного пучка со стороны первого или второго кристаллов двухкристаль- ного интерферометра, когда точки отсчета обратных решеток совпадают; на фиг. 4 О vj
Ч)
СО
со
ход лучей в трехкристальном интерферометре, когда первичный пучок падает со стороны первого или третьего кристаллов, причем межплоскостные расстояния отражающих плоскостей первого и второго кристаллов одинаковы, а третьего меньше их; на фиг. 5 - расположение волновых векторов волн, дифрагированных в трехкристальном интерферометре; на фиг. 6 - ход лучей в интерферометре, когда первичная волна падает на интерферометр со стороны последнего кристалла; на фиг. 7 - расположение волновых векторов волн в трехкристальном интерферометре, когда ме. хплоскостные расстояния первого и третьего кристаллов одинаковы и больше, чем у второго кристалла; на фиг. 8 - схема опыта, когда первичный пучок предварительно асимметричным отражением моно- хроматизируется.
Сущность способа состоит в следующем.
Рассмотрим двухкристальный интерферометр с симметричными отражениями, межплоскостные расстояния отражающих плоскостей первого кристалла которого отличаются от межплоскостных расстояний отражающих плоскостей второго кристалла (фиг. 1).
В таком интерферометре при обращении направления первичного пучка, т.е. в зависимости от того, падает ли первичный пучок на первый кристалл (фиг. 1, слева), или второй (фиг. 1, справа), для периодов муаровых картин получают разные значения, причем, если di da, то при падении первичного пучка со стороны переого кристалла, периоды AI муаровых полос получаются меньше, чем при падении со стороны второго кристалла А2. Этот результат дает возможность найти знак разности di -62 Ad, измерив Ai и Да . и, следовательно, величину и местоположение дилатационного искажения.
Допустим, что первичная плоская волна с волновым вектором Ко падает со стороны первого кристалла под точным углом Брэгга на отражающие плоскости первого кристалла (фиг. 2), тогда из первого кристалла выходят волны с волновыми векторами Ко и kn , которые отчасти налагаются одна на другую на входной поверхности второго кристалла,
Однако, так как межплоскостные расстояния отражающих плоскостей второго кристалла отличаются от межплоскостных расстояний первого, то волны с волновыми векторами Ко и падают на отражающие плоскости второго кристалла под углами скольжения, отличающимися от точного угла Брэгга отражающих плоскостей второго кристалла. В рассматриваемом случае из второго кристалла в направлении падения
5 выходят волны с волновыми векторами RЈ01t и Кнн11, а в направлении отражения - волны с волновыми векторами K0h1t и Kho1t. Таким образом, для периода муаровых картин, когда первичная волна падает со стороны пер10 вого кристалла, получают
cos$z
20
40
Ао
5н
(1)
Как видно из фиг. 2 и 6, в этом случае 15 период муаровых полос равен
& - 1- 1
IKho Kon IKoo Khhl
чтос помощью фиг, 6 можно привести к виду
А 1 cosfe созф EF АВ АТГ
гдеАН Н202-Н101.
Допустим, что первичная волна Ко падает со стороны второго кристалла под точ- ным углом Брэгга. Тогда из второго кристаллу выходят волны с волновыми векторами K02t и Kh , которые падают на отражающие плоскости первого кристалла под углом скольжения, отличающимся от точного угла Брэгга отражающих плоскостей первого кристалла (фиг. 2). В этом случае из первого кристалла выходят в направлении падения волны с волновыми векторами Коо21 и Khh2t, а в направлении отражения - волны „ с волновыми векторами K0h2t и Kho2t. Таким образом, когда первичная волна падает на двухкристальный интерферометр со стороны второго кристалла, для периода муаровых картин получают (фиг. 6)
(2)
А COS01
А1 -жгКак видно из (1) и (2), при разных межплоскостных расстояниях отражающих плоскостей первого и второго кристаллов .,- двухкристального интерферометра период муаровых картин, полученных от этого интерферометра, действительно зависит от направления падения первичной волны, т.е. от того, которое из межплоскостных рассто- цр. яний этих двух кристаллов больше.
На фиг. 3 показано расположение волновых векторов для случая, когда точки Oi и Oz обратных решеток первого и второго кристаллов совпадают одна с другой. И в этом гц случае для А1 и А а получаются значения (1) и (2).
Рассмотрим трехкристальный интерферометр.
Исследуем случаи а - когда межплоскостные расстояния первого и второго криcos$z
Ао
5н
(1)
мощью фиг, 6 можно приве
А 1 cosfe созф EF АВ АТГ
, что первич ны второго к Брэгга. То ходят волны Kh , которы скости перво ения, отлича а отражающи ла (фиг. 2). В талла выходя ы с волновым правлении от векторами K да первичная ный интерфе ристалла, дл олучают (фиг
А COS01
А1 -жгсталлов одинаковы, а третьего отличаются от них (di d2 da) ; б - межплоскостные расстояния второго и третьего кристаллов одинаковы, а первого отличаются от них (di d2 da); в - межплоскостные расстоя- ния первого и третьего кристаллов одинаковы, а второго отличаются от них (di da d2).
Случаи а и б соответствуют двухкри- стальному интерферометру, когда межпло- скостные расстояния отражающих плоскостей его первого и второго кристал- лов отличаются одно от другого, причем если случай а соответствует тому, что первичная плоская волна падает со стороны первого кри- сталла, то случай б соответствует падению этой первичной волны со стороны второго кристалла. В случаях а и б трехкристального интерферометра период муаровых картин зависит также от того, падает ли первичная волна со стороны первого или третьего кристалла (фиг. 4). На фиг. 4 показан случай, когда межплоскостные расстояния отражающих плоскостей первого и второго кристаллов одинаковы, а третьего меньше их (di d2 da).
На фиг. 5 показано расположение волновых векторов волн, дифрагированных в трехкристальном интерферометре. Как видно из фиг. 4 и 5, когда на первый кристалл падает волна с волновым вектором К0 точно под углом Брэгга, то из первого кристалла выходят волны с волновыми векторами KV и Kh , которые под точным углом Брэгга падают на второй кристалл, откуда также под углом Брэгга выходят волны с волновыми векторами кЈь1 и Кьь1, которые налагаются одна на другую на входной поверхности третьего кристалла, из которого выходят волны с волновыми векторами Конь , КньсЛ Koho и Khhh1. Так как межплоскостные расстояния третьего кристалла отличаются от межплоскостных расстояний первого и второго кристаллов, то волны и Khht падают на отражающие плоскости третьего кристалла под углами, отличающимися от точного угла Брэгга этих плоскостей. В результате волновые векторы K0ht и несколько отличаются направлениями, что приводит к возникновению муаровых кар- тин. Такая же ситуация имеет место между волновыми векторами КоЬо и КьыЛ
На фиг. А показан случай, когда межпло- CKOCTHjje расстояния второго и третьего кристаллов одинаковы, а первого меньше их (di d2 da). Указанный случай соответствует случаю а - падение первичной волны со стороны третьего кристалла (фиг, 4). Поэтому рассмотрим геометрию, когда первичная
волна в случае а падает со стороны третьего кристалла. Для этого случая расположение волновых векторов показано на фиг. 4. При геометрии di d2 da период муаровых картин больше, чем при di d2 da.
Как видно из фиг. 4 и 6, для периодов Д (при падении со стороны первого кристалла) и Дб (при падении со стороны третьего кристалла) получаются выражения, аналогичные выражениям (1) и (2).
Расположение волновых векторов для случая в (di da d2) показано на фиг. 7. Это симметричный случай - отражающие плоскости крайних (первого и третьего) кристаллов имеют одинаковые межплоскостные расстояния, которые отличаются от межплоскостных расстояния среднего (второго) кристалла. Здесь под точным углом Брэгга на первый кристалл падает первичная волна (Ко|), а выходящие из этого кристалла волны (KV и KV) падают на второй кристалл под углами, отличающимися от точного yjvia Брэгга. Волны с волновыми векторами и Khh выходящие из второго кристалла, падают на третий кристалл также не под точным углом Брэгга, поэтому углы между волновыми векторами Khho и гораздо больше, чем в случаях а и б, т.е. периоды муаровых картин не зависят от направления падения первичной волны (фиг. 7). С помощью фиг. 7 можно показать, что в случае а для периодов муаровых картин независимо от того, падает ли первичная волна со стороны первого или третьего кристалла, получают
Д 1-1
lЈohh-Kf,hol M&ho - fthhl
1.В двухкристальных интерферометрах, когда межплоскостные расстояния отражающих плоскостей первого и второго кристаллов отличаются одно от другого, период муаровых картин зависит от того, падает ли первичная волна со стороны первого или второго кристалла.
2.В трехкристальных интерферометрах, когда межплоскостные расстояния отражающих плоскостей первых двух (первого и второго) или последних двух (второго и третьего) кристаллов одинаковы, но отличаются от межплоскостных расстояний оставшегося (третьего или первого) кристалла, период муаровых картин зависит от того, падает ли первичная волна со стороны первого или третьего кристалла.
3.В трехкристальных интерферометрах, в которых межплоскостные расстояния первого и третьего кристаллов одинаковы, но межплоскостные расстояния второго кристалла отличаются от них, период муаровых картин не зависит от того, падает ли первичная волна со стороны первого или третьего кристаллов.
4. Изменения периодов муаровых картин, указанные в п, 1 и 2, имеют следующий характер: в случае, когда первичная волна падает на интерферометр со стороны кристалла, межплоскостные расстояния отражающих плоскостей которого больше, чем эти же расстояния выходного кристалла, пе- риоды муаровых картин получаются меньше, чем в случае, когда первичная волна падает со стороны кристалла с меньшими межплоскостными расстояниями отражающих плоскостей.
В обычных рентгеновских дифракционных муаровых исследований с помощью муаровых картин определяют разность межплоскостных расстояний отражающих плоскостей кристаллов интерферометра, При наличии изменения межплоскостных расстояний одного из кристаллов интерферометра этим методом можно определить абсолютное значение дилатационного нарушения, но определить его знак, т.е. уста- новить произошло ли уменьшение или увеличение межплоскостных расстояний исследуемого кристалла, невозможно. Изобретение предлагает методику, с помощью которой можно однозначно зарегистриро- вать произошло ли уменьшение или увеличение межплоскостных расстояний отражающих плоскостей исследуемого кристалла.
Например, если втрехкристальном LLL- интерферометре направления отражающих плоскостей и поверхностей входа и выхода всех трех кристаллов строго одинаковы, а межплоскостные расстояние первых двух кристаллов одинаковы, но третьего кристал- ла отличаются от них, то с помощью двухсто- ронних съемок (съемки при падении первичного пучка со стороны первого и третьего кристаллов) можно найти, какого кристалла межплоскостные расстояния больше, а какого меньше,
Исходя из этих выводов, предлагаются двух- и трехкристальный способы диагностики дилатационных несовершенств кристаллов.
Двухкристальный способ - один из кристаллов эталонный, а другой исследуемый. Если эталонный кристалл совершенный - не имеет ни ротационных, ни дилатационных дефектов и поверхности входа и выхода строго параллельны одна другой и перпендикулярны отражающим плоскостям, а исследуемый кристалл отличается от эталонного только межплоскостными расстояниями отражающих плоскостей, то из
этих двух кристаллов, составив интерферо- метрическую систему и пропустив первичный пучок со стороны эталонного кристалла, а потом со стороны исследуемого, можно определить величину и знак изменения межплоскостных расстояний отражающих плоскостей исследуемого кристалла.
Из выражений (1) и (2) видно, что, когда первичный пучок падает со стороны кристалла, межплоскостные расстояния ch которого больше, чем эти же расстояния d2 выходного кристалла (фиг. 4, сН d2, OiHi
02Н2), то 01 02 и Д 1 Д. Таким образом, при Д 1 Дг имеют OiHi - 02Н2 -Д Н, di -d2 ±Дй, т.е. если период муаровых картин при падении первичной волны со стороны первого кристалла получается больше, чем при падении со второго кристалла, то di
xte, а в противном случае di da.
Далее, как видно из выражений для Д| и Да, разность Дч - Д2 увеличивается с увеличением углов #1 и в ч (фиг. 6),а при углах #1 и #2, близких к п /2, эта разность резко увеличивается, что приводит к существенному росту чувствительности и разрешению способа.
Как видно из фиг, 4 01 и вч являются углами Брэгга первого и второго кристаллов соответственно, и, если первый кристалл эталонный, т.е. известен его угол Брэгга 01, то, измерив #к с помощью соотДН 1
ношения,
можно определить величину разности ДН обратных векторов отражающих плоскостей первого и второго кристаллов, а для определения знака этой разности (знака Д Н OiHi - ОаНз), измеряют и период Д2.
Трехкристальный способ: два кристалла из трех составляют двухкристальную эталонную систему, а третий исследуемый.
Эталонная система состоит из двух высокосовершенных кристаллов, имеющих строго одинаковые межплоскостные расстояния и направления отражающих плоскостей, а исследуемый кристалл отличается от кристаллов этой системы только межплоскостными расстояниями;
Эталонная система, состоящая из двух совершенных кристаллов трехкристального способа, показана на фиг. 4. Как видно из фиг. 4-6, при ch da, когда первичная волна падает со стороны первого кристалла (фиг. 4), для периода Д1 муаровых картин
А созфз получают Д1 д..
а когда первичная
волна падает со стороны третьего {исследуемого) кристалла, то
A COS01 СОзф
Л2 - 5нтпт-
где 0i ft - брэгговские углы отражающих плоскостей первого и второго кристаллов;
вз - угол Брэгга третьего кристалла. Таким образом, с помощью AI определяют величину А Н, а с помощью Д 2 - ее знак.
Для получения достаточно точных ин- терферометрических систем необходимо эталонную систему трехкристального способа сделать из цельного кристалла - два блока на общей кристаллической основе, а также изготавливают тщательно обработанный интерферометрический каркас для точного расположения и юстировки кристаллов-эталонов, эталонных систем и исследуемых кристаллов так, что направления отражающих плоскостей всех кристаллов строго одинаковы.
Указанное верно для первичной плоской волны. Но рентгеновское излучение обычных источников является сферической волной. При первичной сферической волне даже идеальной интерфеоометрической системе возникает периодическое распределение интенсивности дифрагированных волн - полосы смещения, поэтому однозначная интерпретация полученных интерференционных картин осложняется. Во избежание этого необходимо первичную волну обычных источников остроасимметричным отражением превратить в почти плоскую волну (фиг. 8).
Пример. Изготавливают кремниевый двухкристальный интерферометр, блоки которого одинаковы, строго параллельны один другому, совершенны, т.е. не содержат дислокаций, отражающие плоскости имеют одинаковые межплоскостные расстояния. В экспериментах пол зуются излучением М0К« и отражением (220) от блоков интерферометра. Монохроматором служит кристалл кремния с асимметричным отражением (220). Чтобы в соответствующих системах отражающих плоскостей блоков интерферометра появилось различие в межплоскостных расстояниях, а также для создания одинаковых условий съемки при падении первичного пучка как со стороны первого кристалла, так и со стороны вгпоо- го, повышают температуру то первого, то второго кристаллов. Нагревая последовательно либо первый, либо второй блоки интерферометра, увеличивают межплоскостные расстояния то первого, то второго блоков, т.е. последовательно получали два зеркальных один относительно другого двухкри- стальных интерферометра. В каждом случае блоки интерферометра отличаются лишь
межплоскостными расстояниями. Такое последовательное нагревание блоков интерферометра оставляет область падения первичного пучка на кристалл неизменным, 5 а также равносильно изменению направления падения первичного пучка на противоположное.
Для получения однозначных результатов необходимо создать в блоках однород10 ное температурное поле. Для этого конструируют специальные печи, нагревающие блоки со всех сторон (каждый раз нагревается лишь один блок двухкристального интерферометра). Когда температура перво15 го кристалла выше второго, то периоды муаровых картин получаются меньше, чем в случае, когда темпере ура первого кристалла ниже второго.
В случае трехкристального интерферо0 метра с одинаковыми блоками нагревали либо первый, либо второй, либо третий кристаллы, при этом получают следующие результаты.
Когда температура первого кристалла
5 выше второго и третьего кристаллов (эталонная система), то периоды муаровых картин получаются меньше, чем в случае, когда температура третьего кристалла выше температуры первого и второго кристаллов (эта0 лонная система), и наоборот.
Когда температура второго кристалла выше либЪ ниже температуры первого и третьего блоков (эти блоки имеют одинаковую температуру), то период муаровых кар5 тин не зависит от того, с какой стороны интерферометра падает первичный рентгеновский пучок.
В случае, когда исследуются произволь0 ные кристаллы, имеющие как дилатацион- ные, так и ротационные нарушения, то с помощью сканирования можно выделить части кристалла, имеющие только дилатаци- онные нарушения, и оценить знаки их де5 формаций. Для этого необходимо иметь гониометры с пьезоэлектрическим приводом прецизионного вращения, с помощью которого производится предварительная юстировка исследуемого кристалла относи0 тельно эталонного кристалла (эталонной системы), В таких случаях необходимо менять направление падения первичного пучка, т.е. повернуть интерферометрическую систему на 180°,
5 Температура ненагретого кристалла (эталона) в пределах 23-25°, а нагретого 46-48°. Разность температур между нагретым и ненагретым (эталонным) кристаллами каждый раз поддерживается постоянной в течение всей экспозиции.
Формула изобретения Рентгеноинтерферометрический способ исследования дилатационных несовершенств монокристаллов, заключающийся в том, что пучок рентгеновского монохроматического излучения под углом Брэгга направляют на первый эталонный кристалл двух- или трехкристального интерферометра, последние кристаллы которого являются исследуемыми, регистрируют муаровые картины, по которым судят о дилатационных несовершенствах исследуемых монокристаллов, отличающийся тем, что, с целью однозначного определения местопо0
ложения дилатационных несовершенств и знака деформации в исследуемых монокристаллах, первичный пучок предварительным асимметричным отражением превращают в плоскую волну, получают дополнительные муаровые картины, направляя первичный пучок на интерферометр со стороны последнего исследуемого монокристалла, и, сравнивая периоды муаровых полос в полученных картинах, определяют местоположение дилатационных несовершенств и знак деформации, создаваемой этими несовершенствами.
название | год | авторы | номер документа |
---|---|---|---|
Рентгеноинтерферометрический способ исследования кристаллов | 1988 |
|
SU1673933A1 |
Рентгеноинтерферометрический способ определения искажений атомной решетки монокристалла | 1983 |
|
SU1117503A1 |
Рентгеновский интерферометр | 1978 |
|
SU720350A1 |
Способ исследования структурного совершенства монокристаллов | 1980 |
|
SU957077A1 |
Способ получения рентгеновских проекционных топограмм | 1990 |
|
SU1748030A1 |
Способ исследования многоволно-ВОгО РАССЕяНия РЕНТгЕНОВСКиХ лучЕйНА МОНОКРиСТАллЕ | 1979 |
|
SU811122A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОГО ИЗМЕНЕНИЯ МЕЖПЛОСКОСТНЫХ РАССТОЯНИЙ СОВЕРШЕННЫХ КРИСТАЛЛОВ | 2009 |
|
RU2394228C1 |
Способ рентгеновской топографии кристаллов | 1987 |
|
SU1562804A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ | 2013 |
|
RU2541700C1 |
Фокусирующий монохроматор рентгеновского излучения | 1977 |
|
SU737992A1 |
Изобретение относится к области рент- геноинтерферометрических исследований несовершенств кристаллов и может быть использовано в целях определения дилатаци- онных искажений в почти совершенных кристаллах, применяемых в экспериментальной технике и производстве полупроводниковых приборов. Цель изобретения - однозначное определение местоположения дилатационных несовершенств и знака деформации в исследуемых монокристаллах, Пучок рентгеновского монохроматического излучения под углом Брэгга направляют на эталонный первый кристалл двухкристально- го интерферметра или на эталонный первый кристалл трехкристального интерферометра, последние кристаллы которого являются исследуемыми. Первичный пучок предварительным асимметричным отражением превращают в плоскую волну, пропускают первичный пучок со стороны эталонного кристалла, а затем - со стороны исследуемого. Выявленная авторами зависимость периода муаровых картин от направления падения первичного пучка позволяет сравнивать межплоскостные расстояния исследуемого кристалла с межплоскостными расстояниями эталонного кристалла. Исходя из этого можно определить величину и местоположение дилатационного искажения. 8 ил. Ё 1 с
Фиг.1
ИГ.З
&ИГ.2
Зиг.4
Фпг.5
Ог ОД
.Н, Н.
Фиг. 7
H, H,A J В
Фиг. б
л
Фиг.8
Авторское свидетельство СССР № 1287714, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Bonse U., Graeff W | |||
X-ray and Neutron Interferometry | |||
- J.Appl | |||
Phys., 1977, V | |||
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы | 1917 |
|
SU93A1 |
Авторы
Даты
1991-09-23—Публикация
1989-02-03—Подача