Изобретение относится к изготовлению фильтрующих материалов и может быть использовано для тонкой очистки промышленных газов и стоков, расплавленных металлов, а также медицинских биохимических объектов.
Известен способ изготовления изделий из металлических волокон, включающий пропитку искусственных органических волокон раствором металлсодержащего вещества, последующую сушку и термообработку до карбонизации и удаления органической основы и восстановления металла с получением изделия, например, из волокон серебра, никеля, нихрома [1]
Наиболее близким к предлагаемому является способ изготовления волокнистого фильтрующего материала в виде войлока или ткани из ионообменных волокон, включающий обработку органических волокон типа "Нитрон", в растворе гидразингидрата, их омыление раствором щелочи, промывку в обессоленной воде и сушку [2]
В результате этих операций получают тонковолокнистый ВИОН (новые ионообменные волокна) материал с развитой поверхностью и высокими фильтрующими свойствами, однако термостойкий только до 250-280оС. Кроме того, данным способом не удается получить материал с заранее заданными (в широком диапазоне) физико-химическими и биохимическими свойствами.
Целью изобретения является улучшение физико-химических и биохимических свойств известных фильтрующих материалов за счет совмещения достоинств металлокерамических, волокнистых полимерных и плетеных проволочных металлических фильтрующих материалов: тонковолокнистость, прочность, пластичность, развитая поверхность, термостойкость, высокие фильтрующие свойства и способность к регенерации.
Предлагаемый способ отличается от известных тем, что после промывки проводят ионный обмен из раствора солей никеля, меди, циркония и серебра при комнатной температуре в течение 0,5 ч, а после сушки осуществляемой термообработку в течение 1 ч на воздухе при температуре удаления органической основы волокон.
Причем использованию солей каждого из указанных выше металлов соответствуют определенные концентрация и температура термообработки.
Кроме того, для полного сохранения структуры исходного волокна после ионного обмена межволоконное пространство заполняют пастой, например, на основе карбоната натрия и воды, а после термообработки пасту вымывают раствором кислоты, например, уксусной концентрацией 5-15 г/л при комнатной температуре.
Кроме того, для получения серебряно-палладиевого фильтрующего волокнистого материала в первом случае после проведения ионного обмена с использованием соли серебра проводят ионный обмен с использованием соли палладия концентрацией 7-12 г/л по палладию и термообработку при 750-800оС; во втором случае после получения серебряный волокнистый материал обрабатывают в водном растворе хлорида палладия концентрацией 50-55 г/л, промывают водой и проводят термообработку при 800-850оС.
П р и м е р 1. Органическое волокно, преимущественно "Нитрон", обрабатывали в 25%-ном растворе гидразингидрата при 90оС, омыляли 5-10%-ным раствором щелочи при 70оС, промывали обессоленной водой при 50оС. Полученный материал, или готовое ВИОН волокно, обрабатывали в водном растворе уксуснокислых (или азотнокислых) солей никеля, меди, серебра и хлористых солей циркония концентрацией 7-12; 8-13; 17-22; 13-18 г/л по металлу соответственно.
Далее материалу придавали требуемую форму: параллельной, перекрестной намоткой (укладкой), переплетением волокон между собой или на форме (например, из ZrO2) требуемых размеров, заполняли ячейки пастой на основе карбоната натрия и воды (или использовали без заполнения пастой) и подвергали термообработке на воздухе при 750-800; 650-700; 600-650; 1000-1400оС соответственно в течение 1 ч. Далее, если использовали пасту, вымывали ее уксусной (или иной) кислотой концентрации 5-15 г/л, промывали водой и проводили сушку. Полученному материалу придавали требуемую форму (или оставляли без изменения) и использовали в качестве фильтрующего материала на фильтрах различных конструкций.
П р и м е р 2. Для получения серебряно-палладиевого материала после проведения ионного обмена с использованием соли серебра проводили ионный обмен с использованием соли палладия концентрацией 7-12 г/л по палладию в течение 0,5 ч при комнатной температуре. Полученную композицию промывали водой и проводили термообработку при 750-800оС в течение 1 ч.
П р и м е р 3. Изготовленный по способу, приведенному в примере 1, серебряный материал обрабатывали в водном растворе хлоридом палладия концентрацией 50-55 г/л в течение 0,5 ч при комнатной температуре. Полученную композицию промывали водой и проводили термообработку при 800-850оС в течение 1 ч. Полученный материал из серебряно-палладиевого сплава также использовали в качестве фильтрующего материала.
Использование предлагаемого способа получения волокнистых металлических и металлокерамических фильтрующих материалов обеспечивает по сравнению с известными способами следующие преимущества:
увеличение термостойкости и жаропрочности волокнистых материалов, повышение пластичности и снижение хрупкости керамических материалов, а также способности к регенерации, что значительно расширяет область их технического применения;
возможность варьирования биохимических свойств (например, бактерицидности) без снижения заданных физико-химических свойств материалов, что позволяет их использовать как в медицине и биотехнике, так и в химической, металлургической и других отраслях промышленности;
возможность в широком интервале варьировать структурой и формой материалов как в процессе производства, так и после их получения, что позволяет их использовать в фильтрах различных конструкций.
Сущность изобретения: способ получения металлического или металлокерамического волокнистого фильтрующего материала включает обработку органического волокна, преимущественно "Нитрон", в растворе гидразингидрата, омыление, промывку водой и сушку. Способ отличается тем, что после промывки водой на волокне проводят ионный обмен из раствора солей никеля, меди, циркония или серебра в течение 0,5 ч. при комнатной температуре, а после сушки осуществляют термообработку в течение 1 ч на воздухе притемпературе удаления органической основы волокон. 8 з.п. ф-лы.
18 г/л по цирконию, а термообработку осуществляют при 1000 1400oС.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Зверев М.П | |||
Хемосорбционные волокна | |||
- М.: Химия, 1981, с.130-147. |
Авторы
Даты
1995-04-30—Публикация
1991-06-27—Подача