СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТНОГО РАСТВОРА ДЛЯ ФОРМОВАНИЯ ВОЛОКОН Российский патент 1995 года по МПК C08G73/10 

Описание патента на изобретение RU2034861C1

Изобретение относится к химии высокомолекулярных соединений, в частности к способу приготовления полиамидокислотного раствора для получения прочных и термостойких полиимидных волокон.

Известны двухстадийные методы получения полиимидных волокон [1] Первой стадией являются способы приготовления полиамидокислотных (ПАК) растворов путем поликонденсации эквимолярных количеств диангидрида тетракарбоновой кислоты с диамином в полярном, обычно апротонном (амидном) растворителе по схеме
n OQO + n H2N-R-NH2_→
Второй стадией являются способы формования полиамидокислотного волокна с последующей его химической или термической имидизацией с образованием полиимидного (ПИ) волокна по схеме
NQN-
Известен способ приготовления ПАК-раствора для получения ПИ-волокон, который реализуется следующей совокупностью существенных признаков. Проводят поликонденсацию эквимолярных количеств диангидрида ароматической кислоты и смеси двух диаминов. Поликонденсацию ведут в полярном апротонном (амидном) растворителе. В качестве ароматической кислоты берут пиромеллитовую кислоту.

В качестве смеси двух диаминов выбирают такую, где один диамин имеет гибкую структуру за счет шарнирного атома, например 4,4'-диаминодифенилоксид со структурой
H2N O NH2 а второй диамин характеризуется жесткой структурой, например 2,5-бис(п-аминофенил)пиримидин или 4,4'-диамино-п-терфенил при количественном соотношении гибкого и жесткого диаминов (50-85): (15-50) мол. соответственно.

Из ПАК-раствора методом мокрого формования в спиртово-гликолевую коагуляционную ванну формуют ПАК-волокно, которое затем подвергают термоимидизации при нагревании до 350-400оС с образованием ПИ-волокон. Эти волокна характеризуются разрывной прочностью 103 гс/текс, удлинением при разрыве 3-9% и начальным модулем Юнга 13-35 ГПа. Нагрев и выдержка волокна при той же температуре снизила прочность до 29 гс/текс, удлинение до 4-8% и начальный модуль Юнга до 18 ГПа. При этом термостойкость при температуре 5%-ной потери массы характеризовалась температурами 440-470оС.

Основными недостатками волокон, полученных по известному способу, являются низкие физико-механические параметры и малая термостойкость.

Известен также способ приготовления полиамидокислотных растворов для получения полиимидных волокон [2] который реализуется путем поликонденсации диангидрида, выбранного из ряда, включающего пиромеллитовый диангидрид, диангидриды 3,3', 4,4'-дифенил-, 3,3',4,4'-дифенилоксид-, 3,3',4,4'-бензофенонтетракарбоновой кислоты, с диамином жесткой структуры, выбранным из ряда, состоящего из п-фенилендиамина, бензидина и 2,7-диаминофлуорена.

Сформованное ПАК-волокно термоимидизуют и дополнительно термообрабатывают при температурах на 5-100оС выше температур стеклования соответствующих ПИ.

Лучшее по физико-механическим свойствам волокно на основе диангидрида 3,3', 4,4'-дифенилтетракарбоновой кислоты и п-фенилендиамина имело следующие физико-механические характеристики:
ТоС 20 450
Прочность на
разрыв, гс/текс 138 27
Удлинение при
разрыве, 0,9 0,7
Начальный модуль
Юнга, ГПа 192 49
Низкие значения физико-механических показателей, невозможность эксплуатации выше 450оС являются основными недостатками ПИ-волокон, полученных по известному способу.

Целью изобретения является улучшение физико-механических свойств в широком интервале температур и повышение предельной температуры кратковременной эксплуатации ПИ-волокна до 500оС.

Поставленная цель достигается способом приготовления ПАК-раствора для получения ПИ-волокон, который включает следующую совокупность существенных признаков. Проводят поликонденсацию эквимолярных количеств диангидрида ароматической тетракарбоновой кислоты и смеси двух диаминов. Поликонденсацию ведут в полярном апротонном растворителе. В качестве ароматической тетракарбоновой кислоты берут 3,3',4,4'-дифенилтетракарбоновую кислоту. В качестве смеси двух диаминов выбирают такую, где оба диамина имеют жесткую структуру: 2,5-бис(п-аминофенил)пиримидин и п-фенилендиамин при их молярном соотношении (20-80): (20-80).

Из ПАК-раствора методом мокрого формования в спиртово-гликолевую коагуляционную ванну формуют ПАК-волокно, которое подвергают фильерной и пластификационной вытяжке; термоимидизацией из ПАК-волокна получают ПИ-волокно.

Отличительным признаком является использование в качестве смеси двух диаминов такой, где оба диамина имеют жесткую структуру, а состав смеси следующий, мол. 2,5-бис(п-аминофенил)пиримидин 20-80, п-фенилендиамин 20-80.

Изобретение иллюстрируется примерами 1-7.

П р и м е р 4. 2,5-бис(п-аминофенил)пиримидин получают по известному методу с последующей очисткой сублимацией при 220-230оС и 10-2 мм рт. ст. Тпл 253оС. Товарный диангидрид 3,3'4,4'-дифенилтетракарбоновой кислоты очищают возгонкой при 250оС/10-3 мм рт. ст. и при последующем прогреве при 240-250оС/5 мм рт.ст. Тпл 300-302оС.

В 102,42 г N-метилпирролидона растворяют 3,0952 г (0,0118 моля) 2,5-бис(п-аминофенил)пиримидина и 1,2857 г (0,0118 моля) п-фенилендиамина. После полного растворения диаминов в раствор добавляют 7,0 г (0,0236 моля) диангидрида 3,3'4,4'-дифенилтетракарбоновой кислоты. По окончании реакции, которую проводят при комнатной температуре, в атмосфере азота раствор дополнительно перемешивают в течение часа. [ η 3,1 дл/г. Полученный раствор полиамидокислоты фильтруют, дегазируют и используют для получения волокна. Волокно получают методом мокрого формования, используя спиртогликолевую коагуляционную ванну при соотношении этанола и этиленгликоля 1:1 и фильеру с отверстием диаметром 0,4 мм. Кратность фильерной вытяжки 1,5. Образовавшуюся нить подвергают 3-кратной пластификационной вытяжке в обессоленной воде при температуре 50оС, промывке в воде при 50оС и сушке в вакууме при остаточном давлении 5 мм рт. ст. и температуре 60оС. Полиамидокислотное строение материала подтверждено данными ИК-спектроскопии ( ν 3280, 1660, 1535 см-1). Высушенную нить подвергают термической обработке в атмосфере азота, нагревая систему со скоростью 5-6оС/мин до 430оС, после чего выдерживают 10-15 мин при этой температуре, при этом происходит циклическая циклодегидратация образующих волокно ПАК, и полиамидокислотное волокно превращается в полиимидное. Полученное полиимидное волокно охлаждают до комнатной температуры. Полимидная структура волокна подтверждена данными ИК-спектроскопии ( ν 720 см-1 и 1780, 1720 см-1). П р и м е р ы 1-3, 5-7 выполнены в условиях примера 4. Концентрация мономеров в реакционной смеси составляла 9-10 мас. предельная характеристическая вязкость ПАК [η] 2,5-3,2 дл/г.

Физико-механические характеристики полиимидных волокон, приведенные в таблице, определяли по известным методикам. Прочность на разрыв волокон определяли на приборах УМИВ-3 и ИНСТРОН-1195. При проведении испытаний при комнатной температуре образцы волокон, вклеенные в рамки, кондиционировали 24 ч при относительной влажности 65% База образцов, испытываемых на УМИВ-3, составляла 15 мм, скорость нагружения 5 мм/мин. База образцов, испытываемых на ИНСТРОН-1195, составляла 50 мм, скорость нагружения 10 мм/мин. В каждом определении прочности характеристика является средним значением, полученным на 5 параллельных образцах.

При определении теплостойкости образцы волокон помещали в зажимные рамки из фольги (база 15 мм), которые закрепляли в зажимы установки УМИВ-3 и помещали в термокамеру, нагретую предварительно до заданной температуры. После достижения образцом заданной температуры его выдерживали 5 мин и осуществляли испытание на разрыв при той же температуре.

Термостойкость полиимидных волокон определяли на дериватографе фирмы МОМ (навеска 50 мг, тигель керамический, в токе воздуха).

В таблице приведены значения τ5,оС температуры 5%-ной потери массы волокна при термогравиметрическом анализе на воздухе. Эта величина является основной характеристикой термостойкости полиимидов.

Анализ данных таблицы показал, что изобретением достигнута заявленная цель улучшены физико-механические характеристики как при комнатной, так и при повышенных до 400-500оС температурах.

Прочность (σ) удлинение (ε ) и модуль Юнга (Е) ПИ-волокон, полученных в соответствии с изобретением, достигают 214-360 гс/текс, 2,9-4,8% 223-282 ГПа (20о), 95-171 гс/текс, 1,8-2,1% 79-94 ГПа (400оС), 76-127 гс/текс, 1,5-2,0% 70-86 ГПа (450оС) и 41-60 гс/текс, 1,1-1,6% 54-56 ГПа (500оС) при τ5 540-560оС.

В то время, как для базового аналога и прототипа известны следующие характеристики: прочность (гс/текс), удлинение (%), модуль (ГПа) 85; 1,4; 101 и 102,8; 5,3; 29 соответственно (20оС); и далее для баз аналога 40; 16,8; 4,9 (400оС); 37,8; 4,4; 11,7 (450оС) при τ5 470оС.

В таблице даны обоснования заявленным интервальным параметрам. Уменьшение содержания в смеси диаминов 2,5-бис(п-аминофенил)пиримидина до 15 мол. (пример 7) приводит к ухудшению эксплуатационных характеристик, как при 20оС, так и в интервале 400-500оС. Увеличение содержания в смеси диаминов 2,5-бис(п-аминофенил)пиримидина до 85 мол. (пример 1) позволяет получать волокна с достаточно высокими эксплуатационными характеристиками при 20оС, но в интервале 400-500оС происходит более резкое падение характеристик, чем для волокон, получаемых в соответствии с изобретением.

Похожие патенты RU2034861C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТНОГО РАСТВОРА ДЛЯ ФОРМОВАНИЯ ВОЛОКОН 2008
  • Михайлов Геннадий Михайлович
RU2394947C1
ЖЕСТКОЦЕПНЫЕ СОПОЛИИМИДЫ В КАЧЕСТВЕ ВЫСОКОПРОЧНОГО ВЫСОКОМОДУЛЬНОГО ТЕРМОСТОЙКОГО ПЛЕНОЧНОГО МАТЕРИАЛА 1991
  • Котон М.М.
  • Кудрявцев В.В.
  • Артемьева В.Н.
  • Некрасова Е.М.
  • Склизкова В.П.
  • Маричева Т.А.
  • Кожурникова Н.Д.
  • Лайус Л.А.
  • Гофман И.В.
  • Дергачева Е.Н.
  • Смирнова В.Е.
  • Сазанов Ю.Н.
  • Федорова Г.Н.
  • Шкурко О.П.
  • Боровик В.П.
RU2034862C1
ВЫСОКОПРОЧНАЯ ВЫСОКОМОДУЛЬНАЯ ТЕРМО-, ОГНЕСТОЙКАЯ ПОЛИИМИДНАЯ НИТЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2017
  • Мусина Тамара Курмангазиевна
  • Оприц Зинаида Григорьевна
  • Щетинин Александр Михайлович
  • Деркачева Светлана Юрьевна
  • Цветкова Тамара Руслановна
RU2687417C1
Способ получения полиимидных волокон 1975
  • Котон М.М.
  • Флоринский Ф.С.
  • Френкель С.Я.
  • Коржавин Л.Н.
  • Пушкина Т.П.
  • Прокопчук Н.Р.
SU765413A1
ПОЛИИМИДНОЕ ПОКРЫТИЕ ВОЛОКОННЫХ СВЕТОВОДОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2015
  • Выгодский Яков Семенович
  • Семенов Сергей Львович
  • Сапожников Дмитрий Александрович
  • Попова Надежда Александровна
  • Байминов Бато Александрович
RU2610503C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИИМИДНЫХ НИТЕЙ С УЛУЧШЕННЫМИ МЕХАНИЧЕСКИМИ И ТЕРМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ 1993
  • Мусина Т.К.
  • Оприц З.Г.
  • Щетинин А.М.
  • Малинин Н.Н.
  • Андриашин А.И.
RU2042752C1
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ ПОЛИАМИДОКИСЛОТ 1980
  • Анисина Н.Г.
  • Дарвина В.В.
  • Жигарина Г.И.
  • Карчмарчик О.С.
  • Костерева А.Т.
  • Кралина И.М.
  • Кузнецова Г.Б.
  • Славина З.Н.
  • Эфрос Л.С.
  • Яковлева А.М.
  • Якопсон С.М.
RU923245C
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОПЛАСТИЧНОГО ПОЛИИМИДА 1994
  • Кудрявцев В.В.
  • Мелешко Т.К.
  • Калбин А.Г.
  • Богорад Н.Н.
  • Юдин В.Е.
  • Панов Ю.Н.
RU2094441C1
ЧАСТИЧНО КРИСТАЛЛИЧЕСКОЕ ПЛАВКОЕ ПОЛИИМИДНОЕ СВЯЗУЮЩЕЕ И КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2004
  • Светличный Валентин Михайлович
  • Юдин Владимир Евгеньевич
  • Губанова Галина Николаевна
  • Диденко Андрей Леонидович
  • Попова Елена Николаевна
  • Кудрявцев Владислав Владимирович
  • Суханова Татьяна Евгеньевна
RU2279452C2
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРА ПОЛИАМИДОКИСЛОТЫ НА ОСНОВЕ 4,4'-ДИАМИНОТРИФЕНИЛАМИНА 2007
  • Вулах Евгений Львович
  • Кудрявцев Лев Вячеславович
RU2352595C2

Иллюстрации к изобретению RU 2 034 861 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТНОГО РАСТВОРА ДЛЯ ФОРМОВАНИЯ ВОЛОКОН

Использование: для получения прочных и термостойких полимерных волокон, которые широко применяются при производстве высокотермостойких текстильных изделий и органопластиков, используемых в авиации и космической технике. Сущность: предлагается способ получения полиамидокислотного раствора для формования волокон конденсацией диангидрида 3,3′, 4,4′ -дифенилтетракарбоновой кислоты и смеси п-фенилендиамина и 2,5-бис(n-аминофенил)пиримидина при молярном соотношении (20 - 80) : (80 - 20). 1 табл.

Формула изобретения RU 2 034 861 C1

СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОКИСЛОТНОГО РАСТВОРА ДЛЯ ФОРМОВАНИЯ ВОЛОКОН путем поликонденсации диангидрида 3,3′,4,4′-дифенилтетракарбоновой кислоты и п-фенилендиамина, взятых в эквимолярном соотношении, в среде апротонного полярного растворителя, отличающийся тем, что, с целью улучшения физико-механических свойств в широком интервале температур и повышения предельной температуры кратковременной эксплуатации до 500oС процесс проводят в присутствии 2,5-бис(п-аминофенил)пиримидина при молярном соотношении к п-фенилендиамину (20 80) (80 20).

Документы, цитированные в отчете о поиске Патент 1995 года RU2034861C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ получения полиимидных волокон 1975
  • Котон М.М.
  • Флоринский Ф.С.
  • Френкель С.Я.
  • Коржавин Л.Н.
  • Пушкина Т.П.
  • Прокопчук Н.Р.
SU765413A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1

RU 2 034 861 C1

Авторы

Михайлов Г.М.

Коржавин Л.Н.

Кудрявцев В.В.

Котон М.М.

Маричева Т.А.

Иванова М.А.

Боброва Н.В.

Бронников С.В.

Григорьева Н.А.

Шкурко О.П.

Боровик В.П.

Якопсон С.М.

Карчмарчик О.С.

Даты

1995-05-10Публикация

1991-03-07Подача