СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ Российский патент 1995 года по МПК C01B17/76 

Описание патента на изобретение RU2036132C1

Изобретение относится к производству серной кислоты из высококонцентрованного сернистого газа и может быть использовано в металлургической и химической промышленности.

Тенденция развития сернокислотного производства направлена на его интенсификацию и сокращение вредных выбросов.

Известен способ получения серной кислоты из газа, содержащего 50-70% диоксида серы, путем ступенчатого окисления SO2 с промежуточной абсорбцией образовавшегося триоксида серы. Исходный газ после I ступени разбавляют воздухом до содержания в нем 16-18% SO2 и далее перерабатывают на II и III ступени по схеме ДК-ДА. Общая степень превращения составляет 99,9% при содержании в выхлопных газах 0,02% SO2 [1]
Однако в связи с возросшими требованиями по охране окружающей среды общая степень превращения недостаточна.

Наиболее близким к предлагаемому по технической сущности является способ получения серной кислоты путем каталитического окисления диоксида серы кислородом и выделения в абсорбере образовавшегося триоксида серы с возвратом циркуляцией неокисленного SO2 на I ступень [2] Процесс осуществляют под давлением 2-20 атм, а часть газа (менее 5%) выводят на доработку на II ступень процесса на санитарную установку.

При содержании в исходном газе 60-65% SO2 выхлопной газ содержит 0,012-0,052% SO2 при степени превращения 99,8% что недостаточно. Кроме того, в данном процессе энергозатраты повышены из-за большого объема перекачиваемых газов в циркуляционном контуре, образованном на I ступени переработки.

Целью изобретения является повышение степени конверсии и снижение энергозатрат.

Для этого в способе производства серной кислоты из газа, содержащего 50-70% диоксида серы, путем ступенчатого каталитического окисления диоксида серы в триоксид серы и промежуточной абсорбции образующегося триоксида серы с последующей рециркуляцией неокисленного диоксида серы, согласно изобретению газ после промежуточной абсорбции на II ступени окисления делят на три потока в объемном соотношении между ними (0,23-0,35):(0,46-0,58):(0,12-0,25) об. ч. от общего объема газа, причем первый поток направляют на III ступень, второй на первый слой контактного аппарата II ступени, а третий на два последних слоя контактного аппарата II ступени.

Предлагаемое деление газа после абсорбера II ступени на три потока объясняется следующим.

Если доля первого потока больше 0,35 об.ч. то увеличивается содержание SO2 в выхлопных газах, что недопустимо, а если меньше 0,23 об.ч. то не будет обеспечен баланс вывода инертных примесей из циркуляционного контура и их накопление повысит затраты на перекачивание газа во II ступени.

Если доля второго потока больше 0,58 об.ч. а третьего потока меньше 0,12 об. ч. то повышается температура последних слоев контактного аппарата II ступени, при этом процесс окисления отклоняется от оптимального режима и снижается степень превращения SO2 в SO3.

Если доля второго потока меньше 0,46 об.ч. а третьего потока больше 0,25 об. ч. то температура последних слоев снижается ниже оптимальных значений, что уменьшает степень превращения SO2 в SO3.

Известные технические решения, имеющие признаки, отличающие предлагаемый способ от прототипа, в литератуpе не выявлены.

На чертеже представлена схема осуществления способа.

Схема содержит контактные аппараты 1-3 I III ступеней, теплообменники 4-8, абсорберы 9-11, газодувки 12 и 13 и смеситель 14 газов. Циркуляционный контур обозначен пунктирной линией.

Газ с содержанием 50-70% SO2 после промывки и осушки газодувкой 12 направляют на I ступень окисления, где его предварительно нагревают в теплообменнике 4 до 380-420оС и затем подают в контактный аппарат 1 с двумя кипящими слоями катализатора. При 550-560оС первого слоя и 510-520оС второго слоя диоксид серы окисляется до триоксида серы на 87-92% Выходящий из контактного аппарата 1 газ охлаждают в том же теплообменнике 4 до 160-200оС и подают в промежуточный абсорбер 9, где происходит практически полное улавливание триоксида серы.

После абсорбера 9 газовый поток, содержащий неокисленный диоксид серы, направляют на II ступень циркуляционный контур, где в контактном аппарате 2 со стационарными слоями катализатора при 420-600оС диоксид серы окисляется до триоксида серы на 98%
Из контактного аппарата 2 газовый поток охлаждают в теплообменнике 7 и подают в абсорбер 10, а из него в газодувку 13, после чего газ делят на три потока в объемном соотношении между ними (0,23-0,35):(0,46-0,58):(0,12-0,25) об.ч. от общего объема газа.

Первый поток в количестве 0,23-0,35 об.ч. направляют на III ступень катализа в теплообменник 8.

Второй поток в количестве 0,46-0,58 об.ч. направляют на первый слой контактного аппарата 2 после смешения в смесителе 14 с газом, поступающим из абсорбера 9 I ступени окисления, и предварительного нагрева до 400 440оС в теплообменниках 7 и 5.

Третий поток в количестве 0,12-0,25 об.ч. направляют на два последних слоя контактного аппарата 2 II ступени окисления. Газ, поступающий на III ступень окисления, предварительно нагревают до 420-450оС в теплообменниках 8 и 6 и окисляют на 98% в контактном аппарате 3 со стационарными слоями катализатора. После окисления газ охлаждают в теплообменнике 8 и подают на абсорбцию в абсорбер 11, откуда газ с концентрацией 0,007% SO2 выбрасывается в атмосферу.

П р и м е р. Газ с содержанием 60,6% SO2 и температурой 35оС в количестве 11427 нм3/ч подают в теплообменник 4, в котором он подогревается до 400оС, после чего газ направляют на I ступень окисления, состоящую из двух кипящих слоев катализатора. После окисления в контактном аппарате 1 газ со степенью превращения диоксида серы в триоксид 90% подают вновь в теплообменник 4, где он охлаждается до 200оС, отдавая при этом тепло исходному газу, после чего газ подают на промежуточную абсорбцию триоксида серы в абсорбер 9. Из абсорбера 9 газ в количестве 2104 нм3/ч направляют в смеситель 14, где к нему добавляют 1903 нм3/ч газа второго потока (0,52 об.ч. от общего объема 3652 нм3/ч газа после промежуточной абсорбции в абсорбере 10, который делят на три потока).

После смесителя 14 газовую смесь нагревают до 400оС в теплообменниках 7 и 5 и с содержанием 17,5% SO2 подают на II ступень окисления, на первый стационарный слой катализатора в пятислойном контактном аппарате 2. После первого слоя газ направляют для охлаждения в теплообменник 5, а из него на второй слой катализатора. После второго слоя газ охлаждают в теплообменнике 6 и далее подают на третий слой катализатора. Третий поток рециркулируемого газа в количестве 680 нм3/ч (0,19 об.ч. от общего объема 3652 нм3/ч газа после абсорбера 10) с температурой 60оС поддувают на два последних слоя контактного аппарата 2: на четвертый слой 450 нм3/ч, на пятый слой 230 нм3/ч. Первый поток в количестве 1069 нм3/ч (0,29 об.ч. от общего объема 3652 нм3/ч газа после абсорбера 10) направляют на III ступень, где газ нагревают в теплообменниках 8 и 6 и с температурой 440оС подают в контактный аппарат 3 с двумя стационарными слоями катализатора. Степень превращения на III ступени составляет 98% После контактного аппарата 3 газ охлаждают в теплообменнике 8 и с температурой 150оС в количестве 1063 нм3/ч направляют в конечный абсорбер 11, после чего газы выбрасывают в атмосферу с содержанием 0,007% SO2. Общая степень превращения SO2 в SO3 99,999%
Сравнение энергозатрат по предлагаемому способу и прототипу приведено в таблице.

Таким образом, предлагаемый способ позволяет по сравнению с прототипом увеличить общую степень превращения от 99,8 (прототип) до 99,999% и снизить энергозатраты на 18% вследствие сокращения количества перекачиваемых газов.

Похожие патенты RU2036132C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Левин Николай Викторович
  • Игин Владимир Васильевич
  • Филатов Юрий Владимирович
  • Федотов Сергей Станиславович
  • Жукова Анна Акимовна
RU2530077C2
СПОСОБ И УСТРОЙСТВО ДЛЯ КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ КИСЛОРОДОМ ГАЗОВ, СОДЕРЖАЩИХ SO 2007
  • Эркес Бернд
  • Кюртен Мартин
  • Хаверкамп Верена
RU2456232C2
СПОСОБ ПЕРЕРАБОТКИ ГАЗОВ, СОДЕРЖАЩИХ ДИОКСИД СЕРЫ, С ПОЛУЧЕНИЕМ СЕРНОЙ КИСЛОТЫ 1992
  • Нагибин В.Д.
  • Гришин Ю.М.
  • Кутырев М.В.
  • Козлов Н.П.
  • Камруков А.С.
  • Шевалева С.Л.
RU2019498C1
Способ получения серной кислоты 2018
  • Мещеряков Станислав Васильевич
  • Остах Сергей Владимирович
  • Остах Оксана Сергеевна
RU2697563C1
СПОСОБ ПЕРЕРАБОТКИ КОНЦЕНТРИРОВАННОГО СЕРНИСТОГО ГАЗА 1999
  • Кобяков А.И.
  • Арпишкин И.М.
  • Христодуло А.Н.
RU2174945C2
РЕГЕНЕРАЦИЯ ЭНЕРГИИ ПРИ ПРОИЗВОДСТВЕ СЕРНОЙ КИСЛОТЫ 2011
  • Вера-Кастанеда Эрнесто
RU2570658C2
СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ 1993
  • Каллас В.А.
  • Кленичев В.М.
  • Голоус В.И.
  • Филатов Ю.В.
RU2040465C1
ИЗВЛЕЧЕНИЕ ТЕПЛОТЫ АБСОРБЦИИ ТРИОКСИДА СЕРЫ 2014
  • Вера-Кастанеда Эрнесто
RU2672113C2
РЕГЕНЕРАЦИЯ ЭНЕРГИИ ПРИ ПРОИЗВОДСТВЕ СЕРНОЙ КИСЛОТЫ 2015
  • Вера-Кастанеда Эрнесто
RU2632015C2
СПОСОБ ОКИСЛЕНИЯ ДИОКСИДА СЕРЫ 1995
  • Гольдман О.В.
  • Бунимович Г.А.
  • Загоруйко А.Н.
  • Лахмостов В.С.
  • Верниковская Н.В.
  • Носков А.С.
  • Костенко О.В.
RU2085481C1

Иллюстрации к изобретению RU 2 036 132 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ

Способ получения серной кислоты циклическим методом из газа, содержащего 50-70% SO2 заключается в трех ступенчатом окислении SO2 в SO3 с промежуточной абсорбцией образующегося SO3 . При этом газ после абсорбции на II ступени окисления делят на 3 потока в объемном соотношении между первым, вторым и третьим потоками 1,2,3 (0,23-0,35):(0,46-0,58):(0,12-0,25) соответственно, после чего первый поток направляют на III ступень катализа, второй - на первый слой катализатора II ступени, а третий - на 2 последних слоя катализатора II ступени. Ступень конверсии составляет 99,99%. 1 ил., 1 табл.

Формула изобретения RU 2 036 132 C1

СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ циклическим методом из газа, содержащего 50 70 об. диоксида серы, включающий трехступенчатое каталитическое окисление диоксида серы с промежуточной абсорбцией образующегося триоксида серы и рециркуляцию неокисленного диоксида серы на стадию окисления, отличающийся тем, что, с целью повышения степени конверсии и снижения энергозатрат, газ после промежуточной абсорбции на второй ступени окисления делят на три потока при их объемном соотношении 0,23 0,35 0,46 0,58 0,12 0,25 соответственно, после чего первый поток направляют на третью ступень окисления, второй на первый слой катализатора второй ступени, а третий на два последних слоя катализатора второй ступени.

Документы, цитированные в отчете о поиске Патент 1995 года RU2036132C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ получения серной кислоты 1975
  • Мухленов Иван Петрович
  • Сороко Валерий Евгеньевич
  • Бартов Александр Тихонович
  • Васильев Борис Тихонович
  • Гамбург Лев Яковлевич
  • Корегин Юрий Александрович
  • Коновалов Вячеслав Альбертович
  • Славин Геннадий Цалкович
  • Свергуненко Алим Александрович
  • Челомбиев Вячеслав Никитович
  • Шлаин Ефим Миронович
  • Воротников Анатолий Георгиевич
SU644726A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 036 132 C1

Авторы

Явор В.И.

Еремин О.Г.

Сороко В.Е.

Иванова И.Д.

Даты

1995-05-27Публикация

1991-06-21Подача