Изобретение относится к области металлургии, в частности к технологии производства холоднокатаной электротехнической стали. По условиям использования стали в трансформаторах от нее требуются высокая магнитная индукция и низкие потери энергии при перемагничивании (удельные потери). В основе большинства распространенных способов получения особонизких удельных потерь в подобных сталях (в частности, в сталях с сульфонитридным ингибированием) лежат неормализация горячекатаного подката и последующая холодная прокатка с высоким суммарным обжатием (80-90%).
Рекомендуемые режимы нормализации включают, как правило, кратковременный нагрев при 900-1150оС и ступенчатое охлаждение, вначале не очень быстрое (5-16оС/с), а затем ускоренное. Температура начала ускоренного охлаждения колеблется от 750-900оС до 650-870оС. Охлаждение с изменяющейся подобным образом скоростью должно обеспечить формирование дисперсной ингибиторной фазы и мартенситоподобных продуктов распада аустенита, определяющих получение совершенной ребровой текстуры при вторичной рекристаллизации.
Однако экспериментальная проверка указанных способов показала, что из-за слишком широких температурно-скоростных интервалов охлаждения готовая сталь отличается высокой неоднородностью магнитных свойств. Оказалось целесообразным связать скорость охлаждения на первой ступени с содержанием Аl в стали, что существенно уменьшило неоднородность свойств. Вместе с тем, нормализованная при рекомендованных этим способом режимах полоса отличалась повышенной хрупкостью. Кроме того, практическая реализация указанного способа встретила значительные трудности из-за необходимости постоянной корректировки режима обработки в зависимости от химсостава стали.
Отмеченных недостатков лишен способ, в котором отсутствует привязка режима термообработки к химсоставу, а интервал регулируемого охлаждения разбит на три ступени: до 800-850оС скорость 2-5о С/с, до 600-650оС скорость 6-12оС/с и ниже 100оС скорость 0,02-0,2оС/с. Замедление охлаждения на заключительной стадии привело к повышению пластичности, однако высокопроницаемой стали в реальных промышленных условиях получить не удалось. Было обнаружено, что слишком высока температура конца ускоренного охлаждения и низка скорость последнего, в результате чего выделяется недостаточно дисперсных частиц Аl и твердой мартенситоподобной фазы.
В изобретении поставленная цель получение электротехнической стали с особонизкими удельными потерями (высокопроницаемой) и достаточной пластичностью подката достигается более гибким регулированием скорости охлаждения при нормализации. На начальном этапе первой стадии до 1000оС полосу охлаждают с меньшей скоростью: V1=1,0-1,8o С/с, от 1000 до 900оС со скоростью V2= 4-5oC/c, вторую стадию расширяют до температуры Т3 400оС и скорость охлаждения в ней V3 увеличивают до 17-25оС/с, а далее охлаждают замедленно.
Охлаждение с такими скоростями обеспечивает последовательное выделение частиц А1 разной дисперсности сначала более крупных, а затем, при γ ->> α превращении, мелких. В соответствии с существующими представлениями первые контролируют формирование будущих зародышей вторичной рекристаллизации, последние же необходимы для сохранения мелкозернистой матрицы, поглощаемой при вторичной рекристаллизации. Замедление начальной стадии охлаждения, расширение интервала ускоренного охлаждения и увеличение скорости последнего как раз и обеспечивают получение оптимального соотношения частиц ингибиторной фазы различного размера. В то же время замедления охлаждения ниже 400оС оказалось достаточным для предотвращения излишнего упрочнения полосы и ее охрупчивания. Было обнаружено также, что более стабильные высокие свойства достигаются в случае проведения обработки в окислительной атмосфере. Однако при этом необходимо ограничение температурного интервала выдержки 1040-1080оС.
Общими признаками известного и заявляемого решений являются, таким образом, температура нагрева и величины скоростей на втором и заключительном этапах охлаждения. Отличительные признаки заключаются в отсутствии защитной атмосферы в печи, меньшей скорости первой стадии охлаждения, более высокой скорости третьей стадии охлаждения и пониженной температуре ее конца. Кроме того, предлагается регламентация скорости нагрева при обезуглероживающем отжиге. Подобная регламентация оказывается целесообразной в сталях сульфонитридного варианта выплавки для усиления рабочей компоненты при первичной рекристаллизации. В условиях повышенных (более 80%) обжатий при холодной прокатке эта текстурная составляющая развита недостаточно. Как показали эксперименты, при используемых в изобретении скоростей охлаждения при нормализации скорость нагрева Vн при обезуглероживающем отжиге до температуры 850-880оС должна быть выше, чем известная 20-30оС/с по сравнению с 8-17оС/с и 2-15оС/с.
Совокупность известных и отличительных признаков предлагаемого технического решения обеспечивает получение высокопроницаемой стали с особонизкими удельными потерями, что позволяет сделать вывод о соответствии заявляемого решения критериям изобретения "Новизна", "Положительный эффект" и "Cущественные отличия".
Изобретение распространяется на электротехнические стали с 2,8-3,2% кремния, 0,06-0,10% Mn, 0,018-0,030% серы, 0,03-0,06% С, 0,025-0,040% Al, 0,005-0,010% азота. Предлагаемый способ и способ-прототип были опробованы на двух плавках следующего химического состава (см. табл.1).
Полосы горячекатаных рулонов указанных плавок толщиной 2,5 мм подвергали нормализации по режимам заявляемого способа и способа-прототипа, а также отклоняющимся от заявляемого способа. После травления и холодной прокатки на толщину 0,30 мм полосы проходили обезуглероживающий отжиг со скоростным нагревом 20-30оС/c до температуры 850-880оС и высокотемпературный отжиг по существующему режиму. Использованные режимы нормализации и полученные магнитные свойства приведены в табл.2.
Как видно из представленных результатов, проведение нормализации и обезуглероживающего отжига по режимам предлагаемого способа обеспечивает получение высокого уровня магнитных свойств, недостижимого при обработке по способу-прототипу или по режимам, отклоненным от изобретения.
Предлагаемый способ технологичен, не требует дополнительного оборудования и может быть осуществлен в специализированных цехах по производству электротехнической стали, имеющих в составе оборудования агрегат нормализации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ТОНКОЛИСТОВОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ | 1990 |
|
RU2068448C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ | 1990 |
|
RU2022034C1 |
СПОСОБ ПРОИЗВОДСТВА АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ | 2002 |
|
RU2199594C1 |
Способ изготовления анизотропной электротехнической стали | 1990 |
|
SU1813105A3 |
СПОСОБ ПРОИЗВОДСТВА АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ С ВЫСОКОЙ ПРОНИЦАЕМОСТЬЮ | 2019 |
|
RU2701606C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ АНИЗОТРОПНОЙ СТАЛИ | 2002 |
|
RU2199595C1 |
СПОСОБ ПРОИЗВОДСТВА ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ С ВЫСОКОЙ МАГНИТНОЙ ИНДУКЦИЕЙ | 2002 |
|
RU2216601C1 |
СПОСОБ ПРОИЗВОДСТВА ЭЛЕКТРОТЕХНИЧЕСКОЙ АНИЗОТРОПНОЙ СТАЛИ С ПОВЫШЕННОЙ ПРОНИЦАЕМОСТЬЮ | 2006 |
|
RU2348705C2 |
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОНИЦАЕМОЙ АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ | 2019 |
|
RU2701599C1 |
Способ изготовления холоднокатаной текстурованной трансформаторной стали | 1948 |
|
SU148077A1 |
Сущность изобретения: способ включает горячую прокатку, нормализацию, холодную прокатку, обезуглероживающий и высокотемпературный отжиги. Нормализацию при нагреве до 1040 1080°С проводят с охлаждением до 400°С с возрастающей скоростью: до 1000° со скоростью 1,0 1,8°С/с, от 1000 до 900°С со скоростью 4 5°С/с, от 900 до 400°С со скоростью 17 25°С/с и далее замедленно. Наряду с этим при обезуглероживающем отжиге регламентируется скорость нагрева до 850 880°С 20 30°С/с. Обработанная в соответствии с предлагаемым способом сталь отличается высоким уровнем B100 и низкими значениями P1,7/50 1 з. п. ф-лы, 2 табл.
Патент Великобритании N 1594826, кл | |||
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Авторы
Даты
1995-11-20—Публикация
1992-12-21—Подача