СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА Российский патент 1995 года по МПК C10G35/95 

Описание патента на изобретение RU2051167C1

Изобретение относится к газоперерабатывающей и нефтехимической промышленности, в частности к получению высокооктанового бензина, из газового конденсата.

Известен способ получения моторных топлив из газового конденсата путем выделения из него до 30-70% прямогонной бензиновой фракции с низким октановым числом и фракцией дизельного и котельного топлива и последующим облагораживанием бензиновой фракции с целью получения высокооктанового бензина (Гриценко А. И. Газовая промышленность, 1981, N 11, с. 8-9).

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ переработки прямогонных фракций газового конденсата в высокооктановые топлива (А. Г. Агабалан и др. Химия и технология топлива и масел, 1988, N 5, с. 6-7). Согласно этому способу сырье прямогонную фракцию начала кипения -170оС, выделенную из стабильного газового конденсата, фракционируют с выделением прямогонных бензиновых фракций начало кипения -58оС; 58-140оС или 62-170оС. Фракцию 58-140оС или 62-170оС испаряют, перегревают и подвергают каталитической переработке в реакторе в присутствии высококремнеземного катализатора при температуре 300-450оС (380-450оС) и давлении 1-5 МПа (1-2 МПа). Продукты реакции сепарируют, стабилизируют. Ректификацией выделяют целевую высокооктановую бензиновую фракцию, которую компаундируют с бензиновой прямогонной фракцией начало кипения -58оС.

В указанном способе не используют на стадии каталитической переработки фракцию, выкипающую при температуре 170оС, из-за дополнительного закоксовывания катализатора (см. например, Агабалян Л. Г. и др. Цеоформинг новая технология получения высокооктановых топлив на малогабаритных блочных установках// Перспективные процессы и катализаторы нефтепереработки и нефтехимии: Сб. научн. тр. / Гронии ЦНИИТЭНефтехим, 1990 вып. 43 с. 75-84). Вовлечение в переработку этой фракции позволило бы увеличить бензиновый потенциал газоконденсата.

Задачей настоящего изобретения является исключение дополнительного закоксовывания катализатора при использовании на стадии каталитической переработки газоконденсатных фракций, выкипающих при температуре 140-170оС и более. Вовлечение в каталитическую переработку фракции 58оС конец кипения позволяет увеличить потенциал бензиновых фракций в газоконденсате на 10-12% и, соответственно, выход бензина на 6-8% по сравнению с фракцией 58-170оС.

Поставленный результат достигается способом получения высокооктанового бензина из стабильного газового конденсата путем его фракционирования с получением прямогонных фракций, направления одной из них на каталитическую перегородку в присутствии катализатора, содержащего цеолит типа пентасил, при повышенных температуре и давлении, сепарации, стабилизации, ректификации продуктов переработки с получением бензиновой фракции и смещением ее с прямогонной фракцией стабильного газового конденсата, в котором перед фракционированием стабильный газовый конденсат подвергают однократному испарению с выделением жидкого остатка в количестве не менее, чем содержание фактических смол в исходном конденсате, и на каталитическую переработку подают фракцию 58оС конец кипения.

Фактические смолы определяют как остаток при испарении конденсата в струе водяного пара при температуре 180оС в регламентированных условиях (ГОСТ 8489-85. Топливо моторное. Метод определения фактических смол / по Бударову).

Фракцию 58оС конец кипения перегревают и подают на каталитическую переработку в присутствии цеолитсодержащего катализатора типа пентасил с соотношением SiO2/Al2O3 не менее 12 при температуре 300-450оС и давлении 0,5-5 МПа.

Полученные продукты реакции охлаждают, сепарируют, стабилизируют и подвергают ректификации с выделением целевой бензиновой фракции, например, начало кипения -185оС, полученную бензиновую фракцию компаундируют с прямогонными фракциями газоконденсата, например, фракцией начало кипения -58оС, а остаток после ректификации продуктов реакции направляют на выделение ценных ароматических углеводородов С10+, например, дурола, нафталина и др. Легкие углеводороды фракции С14, полученные при стабилизации бензиновой фракции, используют как топливо.

Отличия заявляемого способа заключаются в использовании на стадии каталитической переработки фракции 58оС конец кипения стабильного газового конденсата, подвергнутого однократному испарению с удалением фактических смол в виде жидкого остатка.

Количество жидкого остатка определят, исходя из технологических требований, например, вязкости и прокачиваемости, и оно обычно, в 1,2-4 раза больше количества фактических смол.

Нами установлено, что фактические смолы по химическому составу представляют собой асфальто-смолопарафиновые углеводороды и являются основным источником кокса на катализаторе. После их удаления из сырья катализатор работает также стабильно и с таким же коксообразованием, как при использовании фракции 58-170оС, согласно прототипу. Нормальные алканы и нафтены (С611), оставшиеся в дистиллате (фр. 58оС конец кипения) после однократного испарения и фракционирования, превращаются с конверсией, близкой к 100% и более легкие алканы (С15) и арены С6+.

Способ осуществляют по следующей принципиальной технологической схеме (см. чертеж).

Стабильный газовый конденсат подвергают однократному испарению в испарителе сепараторе 1 с выделением паровой фазы и жидкого остатка, содержащего фактические смолы. Жидкий остаток используют в качестве компонента дизельного или котельного топлива. Паровую фазу подают на ректификационную колонну 2, где верхом отделяют прямогонную бензиновую фракцию начало кипения -58оС, а кубом фракцию 58оС конец кипения. Кубовый продукт колонны 2 испаряют в теплообменнике 3, перегревают в печи 4 и подвергают каталитической переработке в реакторе 5.

Продукты реакции охлаждают в теплообменнике 6 и разделяют в сепараторе 7. Паровую фазу на сепараторе 7, содержащую углеводороды С14, используют как топливо, а жидкую фазу направляют на стабилизационную колонну 8. Дистиллат колонны 8 используют для получения пропан-бутановой фракции, а кубовый продукт направляют на разделение в ректификационную колонну 9. С верха колонны 9 отбирают целевую бензиновую фракцию, а кубовый продукт направляют для извлечения ароматических углеводородов С10+. Полученную бензиновую фракцию компаундируют с легкой прямогонной фракцией. Начало кипения -58оС в емкости 10.

П р и м е р 1 (по прототипу). Стабильный газовый конденсат Вуктыльского месторождения, содержащий фактические смолы в количестве 523 мг/100 см3 (0,8% мас. ), (см. табл. 1, 2) фракционируют с выделением 50% мас. легкой бензиновой фракции начало кипения -58оС, имеющей октановое число (ОЧ) 75 по исследовательскому методу (ИМ), 35 мас. фракции 58-140оС и 15 мас. / фракции 140оС конец кипения.

Фракцию 58-140оС после испарения в теплообменнике и перегревая в печи подают в реактор, где она конденсирует при температуре 380оС, давлении 1 МПа и объемной скорости подачи жидкого сырья 2ч-1 с катализатором, состоящим из 70% цеолита типа пентасил состава (0,03 Na2O˙ Al2O3, 80,1 SiO2) и 30% Al2O3. Продукты реакции направляют на блок сепарации, стабилизации и ректификации. Получают на фракцию 58-140оС 40% мас углеводородных газов С14, 57,5 мас. целевой бензиновой фракции начало кипения -185оС, около 2,5% фракции 185о к. к. и 0,02 мас. кокса.

Полученную бензиновую фракцию компаундируют с легкой прямогонной фракцией начало кипения -58оС. Выход бензина с ОЧ=78 IИМ составляет 70% мас на стабильный газовый конденсат. Длительность работы катализатора без снижения активности 120 ч.

П р и м е р 2. Стабильный газовый конденсат состава по примеру 1 (см. табл. 1, 2 и черт.) подвергают однократному испарению при температуре 120оС в испарителе-сепараторе 1 с выделением 97 мас. дистиллята-фракции начало кипения -195оС и 3 мас. жидкого остатка, используемого в качестве компонента котельного или дизельного топлива. Из фракции кипения -195оС на ректификационой колонне 2 верхом отделяют 51,5% мас фракции начало кипения -58оС, а кубом 48,5 мас. фракции 58-195оС, которую испаряют в теплообменнике 3, перегревают в цепи 4 и затем подвергают каталитической переработке в реакторе 5 по условиям примера 1.

Продукты реакции охлаждают в теплообменнике 6 и разделяют в сепараторе 7. Паровую фазу из сепаратора 7, содержащую углеводороды С14, направляют в топливную сеть, а жидкую фазу на стабилизационную колонну 8. Верхом колонны 8 отбирают фракцию С34, а кубовый продукт направляют на разделение в реакционную колонну 9. Верхом колонны 9 отбирают целевую бензиновую фракцию начало кипения -185оС, а кубом фракцию 185оС конец кипения. Получают на фракцию 58-195оС: 36 мас. углеводородных газов С14, 60,3 мас. целевой бензиновой фракции начало кипения -185оС около 3,7 мас. фракции 185оС конец кипения, содержащей ароматические углеводороды С10+ состава (мас.): дурол 40, нафталин 20; арены С10+ 40, и кокса 0,02 мас.

Полученную бензиновую фракцию компаундируют с легкой прямогонной фракцией начало кипения -58оС в емкости 10. Выход бензина с ОЧ=79 (ИМ) составляет 78,3 мас. Показатели получаемого бензина соответствуют требованиям ГОСТ 2084-77 на автобензин марки А-76.

Длительность работы катализатора без снижения активности 120 ч.

П р и м е р 3. Стабильный газовый конденсат (см. табл. 1, 2), содержащий фактические смолы в количестве 1800 мг/100 см3 (2,6 мас.) подвергают однократному испарению в испарителе 1 при температуре 120оС с выделением 95 мас. фракции начало кипения 200оС и 5 мас. жидкого остатка. Из фракции начало кипения -200оС на ректификационной колонне 2 верхом отделяют 41 мас. фракции начало кипения -58оС, а кубом 59 мас. фракции 58-200оС, которую подвергают переработке по условиям примера 2. Выход бензина с октановым числом 78 (ИМ) составляет 75 мас. выход кокса -0,02 мас. Длительность работы катализатора без снижения активности 120 ч.

П р и м е р 4 (для сравнения). Стабильный газовый конденсат подвергают переработке по условиям примера 2, но без предварительного однократного испарения. Выход кокса 0,06 мас. продолжительность работы катализатора без снижения активности 48 ч.

Похожие патенты RU2051167C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА И АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ 1994
  • Косогоров С.Б.
  • Кузнецов Ю.И.
  • Комаровский Н.А.
  • Кудрявцев М.А.
  • Букреев С.Д.
RU2078791C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 1992
  • Степанов Виктор Георгиевич
  • Ионе Казимира Гавриловна
RU2008323C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ ИЗ ГАЗОВОГО КОНДЕНСАТА 1992
  • Степанов Виктор Георгиевич
  • Ионе Казимира Гавриловна
RU2030446C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 1992
  • Степанов Виктор Георгиевич
  • Ионе Казимира Гавриловна
RU2010836C1
УСТАНОВКА КАТАЛИТИЧЕСКОГО ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА 1992
  • Богданов А.И.
  • Ионе К.Г.
  • Попов А.В.
  • Малахов В.М.
  • Степанов В.Г.
RU2053013C1
СПОСОБ ПЕРЕРАБОТКИ ГАЗОВОГО КОНДЕНСАТА 2010
  • Арбузов Валентин Александрович
  • Губернаторов Владимир Кириллович
  • Кирилец Валерий Михайлович
  • Кирилец Михаил Валерьевич
RU2426767C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА 1990
  • Роговская Н.Х.
  • Мамаева И.М.
  • Мегедь А.А.
  • Хаджиев С.Н.
SU1822574A3
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВЫХ БЕНЗИНОВ 1992
  • Степанов В.Г.
  • Небыков В.И.
  • Ионе К.Г.
RU2024585C1
СПОСОБ ОДНОВРЕМЕННОГО ПОЛУЧЕНИЯ АРОМАТИЧЕСКОГО И АЛИФАТИЧЕСКОГО РАСТВОРИТЕЛЕЙ 1991
  • Шестаков В.В.
  • Батырбаев Н.А.
  • Касьянов А.А.
RU2024588C1
СПОСОБ ПЕРЕРАБОТКИ ЛЕГКОГО УГЛЕВОДОРОДНОГО СЫРЬЯ (ЕГО ВАРИАНТЫ) 1992
  • Окружнов А.М.
  • Бочавер К.З.
  • Григоренко Н.М.
  • Васейко А.И.
  • Ростанин Н.Н.
  • Исаев Б.А.
RU2041918C1

Иллюстрации к изобретению RU 2 051 167 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА

Использование: нефтехимии. Сущность изобретения: стабильный газовый конденсат подвергают однократному испарению с получением жидкого остатка в количестве не менее, чем содержание фактических смол в исходном конденсате. Затем конденсат подвергают фракционированию. Фракцию 58°С КК конец кипения подвергают переработке в присутствии катализатора, содержащего цеолит типа пентасил. Бензиновую фракцию продуктов переработки смешивают с фракциями стабильного газового конденсата. 1 ил. 2 табл.

Формула изобретения RU 2 051 167 C1

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОГО БЕНЗИНА из стабильного газового конденсата путем его фракционирования с получением прямогонных фракций, направления одной из них на каталитическую переработку в присутствии катализатора, содержащего цеолит типа пентасил, при повышенных температуре и давлении, сепарации, стабилизации, ректификации продуктов переработки с получением бензиновой фракции и смешением ее с прямогонной фракцией стабильного газового конденсата, отличающийся тем, что стабильный газовый конденсат перед фракционированием предварительно подвергают однократному испарению с выделением жидкого остатка в количестве не менее чем содержание фактических смол в исходном конденсате и на каталитическую переработку направляют фракцию 58oС КК.

Документы, цитированные в отчете о поиске Патент 1995 года RU2051167C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Химия и технология топлива и масел, 1988, N 5, с.6-7.

RU 2 051 167 C1

Авторы

Косогоров С.Б.

Кузнецов Ю.И.

Бобылев Б.Н.

Степанов В.Г.

Ионе К.Г.

Кудрявцев М.А.

Букреев С.Д.

Андреев В.А.

Мостовая Л.А.

Даты

1995-12-27Публикация

1993-06-08Подача