МЕМБРАННЫЙ МОДУЛЬ Российский патент 1996 года по МПК B01D61/28 B01D63/00 

Описание патента на изобретение RU2060802C1

Изобретение относится к мембранной технике, а именно к спиральному мембранному модулю с использованием ионнообменных мембран.

Предлагаемый модуль предназначен для обессоливания водных растворов неэлектролитов и полиэлектролитов, в частности белков, методом нейтрализационного диализа. Изобретение может быть использовано для обессоливания водных растворов углеводов (глюкозы, сахарозы, лактозы, лактулозы и т. д.), водных растворов природных и синтетических полимеров (декстрана, B-винилпирролидона, различных водорастворимых белков).

В описании используются следующие термины и сокращения:
А мембрана анионообменная мембрана, например, Neoseрta АМ-2 [1] производства Японии (толщина 0,13 мм, ионнообменная емкость 1,8 мг-экв/г, содержание воды в сухой мембране 0,25 г/г);
Ralex VA-2 [2 и 3] производства Чехословакии (0,57 мм, 1,8 мг-экв/г), 0,51 г/г);
МАК-2 [4] производства России (0,6 мм, 0,8 мг-экв/г, 0,60 г/г);
К-мембрана катионообменная мембрана, например, Neosepta СМ-2 [1] производства Японии (толщина 0,13 мм, ионнообменная емкость 1,90 мг-экв/г, содержание воды в сухой мембране 0,30 г/г);
Ralex КS-1 [2 и 3] производства Чехословакии (0,52 мм, 2,20 мг-экв/г, 0,55 г/г);
МКК-1 [4] производства России (0,62 мм, 2,0 мг-экв/г, 0,7 г/г).

Непроницаемая пленка полиэтиленовая толщиной 0,5 мм.

Сетка-сепаратор из полиэтилена или пропилена толщиной 1 мм.

Известен мембранный модуль, используемый для обессоливания водных растворов неэлектролитов, в частности метанола, методом нейтрализационного диализа [5] Этот метод основан на способности ионообменных мембран пропускать противоионы и служить барьером для коионов.

Известный плоский модуль представляет собой корпус, включающий три камеры: средняя камера обессоливания образована катионо- и анионообменной мембранами, две наружных камеры образованы стенкой корпуса и катионообменной мембраной (кислотная камера), стенкой корпуса и анионообменной мембраной (щелочная камера), соответственно. Модуль имеет также патрубки для ввода, соответственно, растворов кислоты, щелочи и обессоливаемого раствора и патрубки для вывода растворов.

Модуль работает следующим образом.

В камере обессоливания циркулирует водный обессоливаемый раствор, в наружных камерах водный раствор кислоты и щелочи, соответственно. При этом происходит обмен катионов солей на ионы водорода через катионообменную мембрану и анионов солей на ионы гидроксила через анионообменную мембрану. Реакция нейтрализации, протекающая в камере обессоливания, непрерывно сдвигает равновесие, что позволяет достичь высокой степени обессоливания.

Для решения таких задач, как обессоливание морской воды [6] используют мембранный модуль, содержащий плоские пакеты чередующихся пар А- и К-мембран марки Neosepta. Такие пакеты фиксируются в аппарате типа фильтр-пресса фирмы Тokuyma Soda Co. Ltd.

Основным недостатком известного мембранного модуля является невозможность обессоливания небольших количеств растворов, что необходимо в лабораторной и препаративной биотехнологической практике.

Задача изобретения создание мембранного модуля, позволяющего проводить масштабирование процесса обессоливания в широком диапазоне объемов обессоливаемых растворов.

Это достигается с помощью мембранного модуля, включающим центральный цилиндрический элемент 1, в пазах которого фиксируются края катионообменной 2, анионообменной 3 мембран и непроницаемой инертной пленки 4. Обе мембраны и непроницаемая пленка отделены друг от друга сетками-сепараторами 5 с образованием камеры обессоливания между катионо- и анионообменной мембранами, кислотной камеры между катионообменной мембраной и непроницаемой пленкой и щелочной камеры между анионообменной мембраной и непроницаемой пленкой. Каждая сетка-сепаратор имеет по периметру слой герметика. Все перечисленные камеры образованы навивкой в рулон мембран 2 и 3, пленки 4 и сеток-сепараторов 5 на цилиндрический элемент 1. Свернутый многослойный рулон фиксируется и герметизируется цилиндрическим корпусом 6, имеющим выходные патрубки 10, 11, 12 для обессоливаемого, кислотного и щелочного растворов, соответственно. Вход этих растворов в модуль осуществляется через входные патрубки 7, 8, 9, расположенные на цилиндрическом элементе.

На фиг. 1 изображена конструкция известного единичного мембранного плоского модуля, где: 1 элементы корпуса; 2 сетки-сепараторы; А анионообменная мембрана; К катионообменная мембрана; 3, 4, 5 входные патрубки для обессоливаемого, щелочного и кислотного растворов, соответственно; 6, 7, 8 выходные патрубки для этих растворов.

На фиг. 2 конструкция известного многокамерного мембранного плоского модуля, где: 1 элементы корпуса; 2 сетки-сепараторы; А анионообменная мембрана; К катионообменная мембрана; 3, 4, 5 входные патрубки для обессоливаемого, щелочного и кислотного растворов соответственно; 6, 7, 8 выходные патрубки для этих растворов.

На фиг. 3 конструкция предлагаемого спирального мембранного модуля, где: 1 цилиндрический элемент; 2 катионообменная мембрана; 3 анионообменная мембрана; 4 непроницаемая инертная пленка; 5 сетки-сепараторы; 6 цилиндрический корпус; 7, 8, 9 входные патрубки для обессоливаемого, кислотного и щелочного растворов, соответственно; 10, 11, 12 выходные патрубки для этих растворов.

Отличительными признаками предлагаемой конструкции является наличие центрального цилиндрического элемента и проницаемой инертной пленки. Только при наличии непроницаемой инертной пленки удается создать трехкамерную спиральную конструкцию в отличие от многочисленных двухкамерных спиральных конструкций, используемых для ультрафильтрации и обратного осмоса [7]
П р и м е р 1. Обессоливание водного раствора глюкозы (100 мл) с концентрацией 150 г/л, содержащего 0,1 н NaCl, проводят в спиральном модуле с длиной центрального цилиндрического элемента 10 см и его диаметром 2,5 см. Активная площадь каждой мембраны 0,02 м2. Для изготовления модуля использованы гетерогенные К мембрана МКК-1 и А мембрана МАК-2 размером 10 x 25 см. В качестве непроницаемой пленки используют полиэтиленовую пленку толщиной 0,5 мм. В качестве сеток-сепараторов используют полиэтиленовые сетки толщиной 1 мм. Диаметр модуля в рабочем состоянии 5,5 см. Камеры модуля при этом имеют емкость 20 см3. Циркуляция растворов соляной кислоты и едкого натрия (концентрация 0,08 н.) и обессоливаемого раствора осуществляется с помощью многоканального перистальтического насоса со скоростью 75 ± 5 мл/мин. Через 6 мин достигается 90% обессоливание, через 90 мин 99% Получают 98 мл глюкозы с концентрацией 129 г/л. Выход: 84%
П р и м е р 2. На модуле, конструкция которого описана в примере 1, проводят обессоливание водного раствора лактозы (100 мл) с концентрацией 150 г/л, содержащего 0,1 н. NaCl. Через 60 мин достигается 93% обессоливание, через 90 мин 99% Получают 98 мл лактозы с концентрацией 141 г/л. Выход: 92%
П р и м е р 3. Обессоливание молочной сыворотки (200 мл) с концентрацией белка 5,12 мг/мл проводят в спиральном мембранном модуле с длиной центрального цилиндрического элемента 10 см и его диаметром 2,5 см. Активная площадь каждой мембраны 0,04 м2. Для изготовления модуля используют гетерогенные мембраны Ralex: катионообменная КS-1 и анионообменная VA-2 размером 10 x 50 см. Диаметр модуля в рабочем состоянии 10 см, емкость камер 40 см3.

Процесс обессоливания молочной сыворотки ведут в условиях примера 1. Через 90 мин достигается 94% обессоливание. Получают 197 мл обессоленной сыворотки с концентрацией молочных белков 4,78 мг/мл, что соответствует 91% выходу.

Похожие патенты RU2060802C1

название год авторы номер документа
ЭЛЕКТРОДИАЛИЗАТОР 1993
  • Димидова Надежда Сергеевна
  • Шангин Игорь Александрович
  • Носов Дмитрий Александрович
RU2070427C1
СПОСОБ ПОЛУЧЕНИЯ МОНОДИСПЕРСНОГО СИНТЕТИЧЕСКОГО ПОЛИМЕРНОГО ЛАТЕКСА С КАРБОКСИЛИРОВАННОЙ ПОВЕРХНОСТЬЮ ЧАСТИЦ 1998
  • Меньшикова А.Ю.
  • Евсеева Т.Г.
  • Шабсельс Б.М.
RU2164919C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ МУЛЬТИСЛОЙНЫХ ПЕРВАПОРАЦИОННЫХ МЕМБРАН 1998
  • Кузнецов Ю.П.
  • Кононова С.В.
  • Ромашкова К.А.
  • Кудрявцев В.В.
  • Молотков В.А.
RU2166984C2
Электродиализатор для обессоливания воды 1981
  • Смагин Виктор Никитич
  • Чухин Валентин Александрович
  • Медведев Игорь Николаевич
  • Щекотов Павел Дмитриевич
SU971403A1
Электродиализатор для обессоливания водных растворов 1983
  • Писарук Виктор Иванович
  • Каракатенко Аркадий Владимирович
  • Гукова Наталья Михайловна
  • Пинчук Виктор Павлович
SU1119708A1
СПОСОБ ПОЛУЧЕНИЯ ПЕРВАПОРАЦИОННОЙ КОМПОЗИЦИОННОЙ ПОЛИМЕРНОЙ МЕМБРАНЫ 1994
  • Кузнецов Ю.П.
  • Кручинина Е.В.
  • Ромашкова К.А.
  • Светличный В.М.
  • Кудрявцев В.В.
RU2094105C1
МНОГОКАМЕРНЫЙ ЭЛЕКТРОДИАЛИЗАТОР 1971
SU320288A1
КОМПОЗИЦИЯ ДЛЯ ЛЕЧЕНИЯ РАНЕВЫХ И ОЖОГОВЫХ ИНФЕКЦИЙ 1994
  • Панарин Е.Ф.
  • Соловский М.В.
  • Кочеткова И.С.
RU2082399C1
СПОСОБ ПОЛУЧЕНИЯ 1,4-Д(+)-ГЛЮКАРОЛАКТОНА И 6,3-Д(+)-ГЛЮКАРОЛАКТОНА 1992
  • Найдис Ф.Б.
  • Копейкин В.В.
  • Панарин Е.Ф.
  • Сантурян Ю.Г.
RU2057136C1
ЭЛЕКТРОИОНИТНАЯ УСТАНОВКА 1993
  • Стариковский Л.Г.
  • Рябцев А.Д.
RU2090251C1

Иллюстрации к изобретению RU 2 060 802 C1

Реферат патента 1996 года МЕМБРАННЫЙ МОДУЛЬ

Изобретение относится к мембранной технике, а именно к спиральному мембранному модулю, содержащему ионообменные мембраны и может быть использован для обессоливания водных растворов углеводов, природных и синтетических полимеров. Сущность изобретения: мембранный модуль представляет собой корпус с тремя смежными рабочими катионо-и анионообменными мембранами. Боковые стенки двух других камер образованы, соответственно, катионообменной мембраной и непроницаемой инертной поверхностью и анионообменной мембраной и непроницаемой поверхностью. Каждая камера модуля снабжена патрубками для ввода и вывода рабочих растворов. Непроницаемая инертная поверхность выполнена в виде пленки, модуль содержит центральный цилиндрический элемент, в пазах которого зафиксированы мембраны и непроницаемая инертная пленка, мембраны и пленка отделены друг от друга сетками-сепараторами. Рабочие камеры выполнены навивкой мембран, пленки и сеток-сепараторов на центральный цилиндрический элемент, при этом свернутый многослойный рулон герметизирован в цилиндрическом корпусе. 3 ил.

Формула изобретения RU 2 060 802 C1

Мембранный модуль для обессоливания нейтрализационным диализом, содержащий корпус, включающий три смежные рабочие камеры, при этом боковые стенки камеры обессоливания образованы катионо- и анионообменными мембранами, боковые стенки двух других камер образованы соответственно катионообменной мембраной и непроницаемой инертной поверхностью и анионообменной мембраной и непроницаемой инертной поверхностью, а каждая камера снабжена патрубками ввода и вывода растворов, отличающийся тем, что он снабжен центральным цилиндрическим элементом с тремя продольными пазами, в которых зафиксированы стенки камер, и сетками-сепараторами, расположенными внутри камер, корпус выполнен цилиндрическим, непроницаемая инертная поверхность выполнена в виде пленки, а рабочие камеры выполнены навивкой мембран, непроницаемых пленок и сеток-сепараторов на центральный цилиндрический элемент, при этом образованный многослойный рулон зафиксирован в цилиндрическом корпусе.

Документы, цитированные в отчете о поиске Патент 1996 года RU2060802C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Sudoh M., Kawamori M., Minamoto K., Anzai
K
Effect intramembrane stracture on transport properties of cations exchange membranes prepared by paste method, - J
Chem
Eng
Jap., 1990, 23, pp.728-734
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ИЗГОТОВЛЕНИЯ ДУГОГАСИТЕЛЬНЫХ КАМЕР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ 0
  • К. К. Намитоков, В. А. Булгаков, Г. Ф. Мицкевич, В. В. Соловьева
  • Б. Брезинский
SU247833A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
БАРАБАННЫЙ ТРАНСПОРТЕР ДЛЯ КАРТОФЕЛЕУБОРОЧНЫХМАШИН 0
  • Н. И. Тимофеев, В. В. Бочаров, В. А. Карпов, В. И. Лапин Н. С. Терехов
SU235485A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Глазкова И.Н
и Глухова Л.П
Методы исследования физико-химических свойств ионообменных мембран
Учебно-методическое пособие
М.: ЦНИИатоминформ, 1981, с.96
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Jgawa M., Echizenja K., Hayashita T., Seno M
Neutralization dialysis for deionization, - Bull
Shem
Soc
Jap., 1987, 60, 1987, p.381
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Jgawa M., Echizenja K., Hayashita T., Seno M
Donnan dialysis desalination, - Chem
Zett
Chem
Soc
Jap., 1986, p.287
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Дытнерский Ю.И
Обратный осмос и ультрафильтрация
М.: Химия, 1978, с.352.

RU 2 060 802 C1

Авторы

Тищенко Галина Алексеевна[Ru]

Блега Мирослав[Cs]

Шатаева Лариса Константиновна[Ru]

Даты

1996-05-27Публикация

1992-10-12Подача