Изобретение относится к химической технологии, а именно к способам получения сорбентов для очистки сточных вод от загрязняющих компонентов, например от нефтепродуктов.
В настоящее время для этих целей опробован природный материал карельский шунгит, представляющий собой углеродистую горную породу, содержащую кремнезем. Оба главных компонента шунгита углерод и кремнезем, находятся в наиболее химически активной форме: углерод в форме, близкой к стеклоуглероду, кремнезем в виде α -кварца, что обеспечивает шунгиту повышенную абсорбционную способность. Удельная поверхность шунгитов в исходном состоянии сравнительно невелика, поэтому их использование в качестве сорбентов неизбежно связано с модифицированием природных материалов.
Известен способ очистки промышленных сточных вод от органических примесей [1] в котором в качестве кремнийсодержащего адсорбента использован шунгит, модифицированный щелочным раствором. Указанный метод позволяет повысить степень очистки стоков от олеиновой кислоты и фенолов, однако это не способствует улучшению адсорбционных свойств материала по отношению к другим загрязняющим компонентам, например нефтепродуктам [2]
Известен также способ очистки промышленных сточных вод от органических примесей [3] при котором для адсорбции применяют шунгит, модифицированный основным нитратом алюминия и содержащий жидкое стекло в количестве 3-5% от веса сорбента.
Кроме того, известен способ получения гранулированного адсорбента [4] при котором шунгит, обработанный основным нитратом алюминия при нагревании, дополнительно обрабатывают смесью, содержащей жидкое стекло и оксид магния, с последующим прокаливанием и обработкой серной кислотой.
Описанные методы позволяют повысить механическую прочность продукта и его сорбционную емкость по отношению к некоторым компонентам, например фенолам и олеиновой кислоте.
Однако химическая обработка не улучшает адсорбционные свойства шунгита по отношению к нефтепродуктам, видимо, из-за того, что нефтепродукты адсорбируются не только углеродом, но и алюмосиликатной составляющей [2] Кроме, того, добавление химических реагентов, например нитрата алюминия, вызывает повышение их концентрации в воде, в связи с чем возникает необходимость дополнительного контроля за содержанием в воде добавленных элементов, например алюминия.
Наиболее близким к заявляемому по технической сущности является способ очистки сточных вод от нефтепродуктов [5] при котором в качестве фильтра применяют смесь, состоящую из модифицированного шунгита, содержащего 10-30% углерода и термообработанного при 150-200оС, и углеродного волокна при следующем соотношении компонентов, об. Шунгит 70-90 Углеродное волокно 10-30
Данный способ позволяет повысить степень очистки сточных вод от нефтепродуктов за счет использования в составе смеси для фильтрации углеродсодержащих компонентов. Однако термообработка шунгита при температуре 150-200оС обеспечивает только сушку материала, но не увеличивает количество мезопор, способствующих улучшению его адсорбционных свойств. Кроме того, углеродистое волокно дефицитный и дорогостоящий материал и его применение увеличивает стоимость очистки воды.
Целью изобретения является повышение адсорбционной емкости и удельной поверхности шунгита.
Для достижения этой цели в способе модифицирования природного сорбента шунгита, включающем его дробление, сортировку и термообработку, согласно изобретению термообработку шунгита проводят при температуре 500-550оС в течение 2-3 ч.
В соответствии с данными, приведенными в работе [2] при 300оС происходит перестройка структуры пор шунгита, возрастает доля замкнутых пор и поверхность в значительной мере теряет гидрофильные и адсорбционные свойства. Однако исследования показали, что при дальнейшей термообработке в интервале температур 500-550оС происходит резкое изменение в сторону увеличения количества пор размерами 80-200 , наиболее благоприятных для сорбционного извлечения нефтепродуктов. При этом значительно возрастает суммарный объем пор, а также удельная поверхность образцов шунгита.
Способ осуществляют следующим образом.
Предварительно раздробленный шунгит подвергают сортировке для получения однородного материала с размерами зерен 3-5 мм. Затем этот материал помещают в муфельную печь и осуществляют его прокаливание при температуре 500-550оС в течение 2-3 ч. Далее различными физико-химическими методами осуществляют контроль структурных характеристик модифицированного шунгита.
П р и м е р ы осуществления способа.
Раздробленные и отсортированные образцы шунгита с размерами зерен 3-5 мм помещали в муфельную печь и осуществляли их прокаливание при температурах 400, 450, 500, 550, 600, 650оС. При каждой температуре время прокаливания составляло 1; 1,5; 2; 2,5; 3; 3,5 ч (см. чертеж, на котором приведен график термообработки).
После прокаливания методом насыщения гексаном в образцах определяли суммарный объем пор, методом ртутной порометрии удельный вес пор в интервале 80-200 , т.е. в области, наиболее благоприятной для сорбционного взаимодействия, и методом тепловой десорбции азота удельную поверхность образцов шунгита.
Модифицированный шунгит помещали в адсорбционную колонку диаметром 45 мм, где образовывался слой шунгита высотой 450 мм. Через эту колонку пропускали сточную воду, содержащую 1,1 мг/л нефтепродуктов, с линейной скоростью 0,95 м/с. На выходе из колонки методом инфракрасной спектрометрии определяли содержание нефтепродуктов в очищенной воде.
Термообработке подвергался шунгит, имевший в исходном состоянии суммарный объем пор 0,17 см3/г и удельную поверхность 27 м2/г.
Результаты исследований приведены в таблице и на графике термообработки.
Данные, приведенные в таблице, показывают, что в результате термической обработки по заявленному способу суммарный объем пор шунгита возрос в 1,7-1,8 раза, а удельная поверхность увеличилась в 2,2-2,3 раза.
На графике видно, что количество пор размером 80-200 достигает максимума при прокаливании в течение 2-3 ч при температуре 500-550оС.
Исследования показали, что при использовании модифицированного шунгита в качестве сорбента содержание нефтепродуктов в воде на выходе из адсорбционной колонки составило 0,03 мг/л, в то время как при очистке с помощью природного шунгита концентрация нефтепродуктов в воде достигает 0,12 мг/л, т.е. в 4 раза выше. Динамическая емкость модифицированного шунгита 0,4 мг нефтепродуктов на 1 г сорбента, а исходного только 0,16 мг/г.
Заявленный способ позволяет значительно увеличить удельную поверхность и суммарный объем пор шунгита, что в итоге дает возможность улучшить качество очистки воды от загрязняющих веществ, например от нефтепродуктов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СИНТЕТИЧЕСКИХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ | 1993 |
|
RU2060959C1 |
СПОСОБ МОДИФИЦИРОВАНИЯ СОРБЕНТА НА ОСНОВЕ МЕТАЛЛУРГИЧЕСКОГО ШЛАКА | 1993 |
|
RU2068297C1 |
СОРБЕНТ ДЛЯ УДАЛЕНИЯ ВРЕДНЫХ ПРИМЕСЕЙ ИЗ СРЕДЫ, ИХ СОДЕРЖАЩЕЙ, ПРЕДПОЧТИТЕЛЬНО ДЛЯ УДАЛЕНИЯ НЕФТИ И ВЫСШИХ УГЛЕВОДОРОДОВ | 1999 |
|
RU2169612C2 |
Наноструктурированные сорбенты для очистки воды от нефтепродуктов и способ очистки воды | 2022 |
|
RU2796307C1 |
Способ очистки сточных вод от нефтепродуктов | 1986 |
|
SU1433901A1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ ДЛЯ ОЧИСТКИ ВОДЫ | 2004 |
|
RU2277013C1 |
СПОСОБ КОМПЛЕКСНОЙ ОЧИСТКИ СТОЧНЫХ ВОД УГЛЕРОДМИНЕРАЛЬНЫМ СОРБЕНТОМ ИЗ САПРОПЕЛЯ | 2009 |
|
RU2414430C1 |
СПОСОБ ОЧИСТКИ ВОДЫ ОТ НЕФТЕПРОДУКТОВ | 2001 |
|
RU2182118C1 |
СПОСОБ ОЧИСТКИ ВОДНО-ЭТАНОЛЬНЫХ СМЕСЕЙ ОТ ИЗОПРОПИЛОВОГО СПИРТА | 2008 |
|
RU2359918C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ МНОГОКОМПОНЕНТНЫХ ЗАГРЯЗНЕНИЙ | 2017 |
|
RU2644880C1 |
Использование: в химической технологии, а именно в способах получения сорбентов для очистки сточных вод от загрязняющих веществ, например от нефтепродуктов. Сущность изобретения: шунгит модифицирован путем прокаливания при 500 - 550oС в течение 2 - 3 ч. 1 ил., 1 табл.
Способ модифицирования природного сорбента шунгита, включающий дробление, сортировку и термообработку, отличающийся тем, что термообработку проводят при 500 550oС в течение 2 3 ч.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ очистки промышленных водот органических примесей | 1972 |
|
SU508488A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Кузнецова Г.В | |||
и др | |||
Очистка производственных сточных вод от нефтепродуктов | |||
- Цветная металлургия, N 8, 1987, с.34-36 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ очистки промышленных сточныхВОд OT ОРгАНичЕСКиХ пРиМЕСЕй | 1979 |
|
SU814879A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Способ получения гранулированногоАдСОРбЕНТА | 1979 |
|
SU822881A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Способ очистки сточных вод от нефтепродуктов | 1986 |
|
SU1433901A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1996-05-27—Публикация
1993-10-13—Подача