Изобретение относится к отрасли народного хозяйства, ведающей оборудованием аудиторий, в частности школ, например, классными досками.
Известен способ установки классной доски, по которому доску подвешивают на стену, а ее боковые плоскости перемещают для создания оптимальных условий видения (ГОСТ 20064-86, тип. 2, фиг.2). Недостатком способа является невозможность "на глазок" оптимально расположить створки, времяемкость процесса.
За прототип принят способ, по которому цельную классную доску, предварительно сделанную дугообразной (вид в плане), помещают на стену (а.с. N 1832626, МКИ В 43 L 1/04, 1989,прототип). Недостатком прототипа является неодинаковая видимость поверхности доски вследствие различных углов видения ее поверхности, при этом указанные условия различаются более чем в 10 раз для сидящего в точке Е и точке Ж при наблюдении отрезка ВО доски ВК в классе АВСД (фиг.1), если расположение доски в классе на стене (фиг. 2а).
Цель изобретения предложение способа удобной установки доски, улучшающей ее обзорность из критических точек аудитории.
Поставленная цель достигается тем, что доску поворачивают в углу класса (фиг. 2б-г) на расчетный угол, определяемый из геометрического анализа (фиг. 3) поворачиваемой в углу В доски либо устанавливаемый экспериментальным путем с помощью дополнительных приспособлений.
Из материалов прототипа известно, что доска, установленная в типовом классе, становится более удобной для обозрения, если имеет вид дуги с определенным коэффициентом, определяющим ее крутизну. На основании приведенных данных о классной комнате оптимальная кривизна доски, помещаемой в середине классной стены, характеризуется коэффициентом а, равным 0,0111. Но чтобы доска такой кривизны не стала менее обзорной при перемещении ее к стене ВА (фиг. 1,3) ее нужно повернуть как на фиг. 2Г. В результате этого поворота ученики в точках Ж,Д будут иметь улучшающиеся условия видения, ученик в точке Е не будет иметь худших условий видения по сравнению с учениками в других точках, а ученик в точке А начнет иметь ухудшающиеся условия видения по мере поворачивания доски к ученику в точке Ж. В силу этого оптимальным поворот доски будет, когда угол видения отрезка доски ВО из точки А и точки Ж будет одинаков. При этом необходимо учитывать, что по мере поворота доски к ученику Ж доска будет приближаться к ученику А, компенсируя тем самым в определенной мере ухудшение видения из-за поворачивания от него доски. Геометрический анализ фиг.3 и алгебраическое преобразование получившихся уравнений позволили охарактеризовать нижеприведенным уравнением угол (β) поворота доски, расположенной у в угловой части класса поверхностью к аудитории, т.е. угла, в плане образованного линией передней опорной плоскости 12 и отрезком прямой (ее продолжением), образованной соединением точек (ВIКI), симметричных относительно вертикальной оси симметрии Ц доски.
,
где а безразмерный коэффициент,
Г кратчайшее расстояние от точки А (точка ухудшающегося видения) до передней опорной плоскости 12,
Lпр проекция полудоски на переднюю опорную плоскость (ВЦ),
lпр проекция отрезка полудоски на переднюю опорную плоскость (ВО'), при этом отрезок полудоски не превышает 1 дм,
αг угол, имеющий положительное значение и определяемый из выражения:
,
αср угол, определяемый из уравнения:
,
Z расстояние между перпендикулярами, опущенными на переднюю опорную плоскость из мест, расположенных наиболее сбоку от доски и от дальнего ее края (расстояние СВ между СЖ и В1 В),
Н кратчайшее расстояние до передней опорной плоскости с мест, расположенных наиболее сбоку от доски (СЖ).
Поскольку, даже определив оптимальный угол установки доски, установить доску точно на указанный угол сложно, особенно с вогнутой доской, даже несмотря на наличие элементов крепления доски 9-11, к торцу доски прикреплен подвижно индикатор правильности крепления 14-мерный стержень или мерная лента, устанавливаемые при необходимости перпендикулярно вертикальной оси доски. Величину перемещения точки BI под контролем индикатора 14 от точки В к точке А (при этом задняя поверхность доски В1 ОЦЧ К1 постоянно касается стены 12) hcд, равную Ч1 Ч2, определяют из уравнения:
,
где Lпр.доб величина проекции в плане при касании стен 12,13 на опорную переднюю плоскость ВС или параллельную ей В1 К1 отрезка дуги В1 Ц К1 доски между вертикальной осью симметрии Ц и точкой касания дуги линии опорной плоскости или параллельной ей при повороте дуги на угол β точкой Ч, т.е. величина проекции отрезка ЦЧ дуги, равная Ц'Ч'.
Если доска плоская, то вследствие a=0, 1-3 уравнения упрощаются, и hсд= 2L:tgβ, где L= 0,5 BK (фиг.1), т.е. 0,5 ширины доски.
В иных аудиториях, например, клинообразной формы где-либо в цехе, доску устанавливают, протягивая из критических точек (например, А и Ж фиг.1) от краев периферических горизонтальных отрезков, например, В,О,И,К нити к одной из критических точек. Затем отмеряют одинаковое расстояние от этих точек, например, по 2 м на каждой из нитей, например, в точке Q (фиг.1) и так поворачивают доску, чтобы расстояния между точками Q у каждой пары нитей были сопоставимыми. При этом достигнутый поворот доски будет оптимальным.
Изобретение поясняют следующие примеры.
ПРИМЕР 1.
Доска, серийно выпускаемая для школ, дугообразна в плане, как и в прототипе имеет параболическую зависимость с а=0,0111. Оптимальная кривизна доски для класса, если она висит в середине классной стены, она хуже наблюдаема из точки Ж, если расположена с края В (фиг. 1). Для более равномерной видимости ее участков со всех точек класса,имеющего вместе с доской следующие характеристики: Lпр=15 (размеры в дм), a=0,0III, Г=60, lпр=I, Н= 15, Z= 66, Lпp.доб.=14 с помощью формулы 1 устанавливаем, что β=28,4°, а с помощью формулы 3 получаем, что указанные условия будут соблюдены, если край ВI доски продвинуть вдоль стены 13, отметив индикатором 14 расстояние 156 см и закрепить доску в этом положении с помощью креплений.
ПРИМЕР 2.
В помещении (фиг.1), временно приспособленном для одной лекции с использованием доски ВК, наихудшая видимость из точек А и Ж, если поместить доску в угол В, как изображено на фиг. 2б. Для оптимальной установки доски из точек В,0,И,К в точку Ж протянули 4 нити. То же самое сделали для точки А. Отметив одинаковое расстояние на нитях из точек А и Ж, стали плавно поворачивать доску, а наблюдатели точек, отмеченных на нитях, измеряли между ними расстояния попарно между нитями из точки В,О и между нитями из точек ИК. При определенном положении расстояние между замеченными точками на нитях имело минимальные различия, что показало оптимальное расположение доски в классе.
Применение способа позволит минимум в 2 раза улучшить обзор доски для наблюдателей из наихудших точек обзора доски. ЫЫЫ2
Сущность изобретения: доску поворачивают согласно приведенной схеме плана на угол , величину которого определяют из уравнения. Край доски закрепляют согласно той же схеме плана на расстоянии от передней опорной плоскости, величину которого находят из другого уравнения. 3 ил.
Способ установки школьной доски в угловой части класса, отличающийся тем, что, с целью создания оптимальных условий видимости для наиболее удаленных от передней опорной плоскости крайних мест класса и упрощения в реализации, доску поворачивают, согласно приведенной схеме плана, на угол β, величину которого определяют из уравнения
где а безразмерный коэффициент;
Г кратчайшее расстояние от точки А до передней опорной плоскости;
Lпр- проекция полудоски на опорную переднюю плоскость;
lпр проекция отрезка полудоски на опорную переднюю плоскость;
αГ угол, определяемый из выражения
αср угол, определяемый из уравнения
Z расстояние между перпендикулярами, опущенными на переднюю опорную плоскость из мест, расположенных наиболее сбоку от доски и от дальнего ее края;
H кратчайшее расстояние до передней опорной плоскости с мест, расположенных спереди наиболее сбоку от доски;
а край доски закрепляют согласно приведенной схеме плана, на расстоянии hсд= Ч1Ч2 от передней опорной поверхности, величину которого находят из уравнения
где Lпр.доб величина проекции в плане на опорную переднюю плоскость ниспадающего отрезка ЦЧ дуги B1ЦК1 на основание B1K1.
Авторское свидетельство СССР N 1832626, кл | |||
Зубчатое колесо со сменным зубчатым ободом | 1922 |
|
SU43A1 |
Авторы
Даты
1996-06-27—Публикация
1989-08-03—Подача