Изобретение относится к каталитической очистке дымовых газов от окислов азота и может быть использовано в газовой, нефтеперерабатывающей промышленности, а также на любых теплоэнергетических установках.
Наиболее близким по технической сущности и достигаемому эффекту, т.е. прототипом, является способ очистки дымовых газов от окислов азота селективным каталитическим восстановлением аммиачной водой при 300 480oC в присутствии катализаторов.
Окислы азота оказывают неблагоприятное действие на окружающую среду, - разрушается хлорофилл растений, повреждаются листья и хвоя, а двуокись азота раздражает дыхательные пути и слизистую оболочку глаза.
Степень очистки дымовых газов от окислов азота и проскок аммиака зависят от состава дымовых газов, концентрации NOx в очищаемом газе, типа катализатора, т.к. в процессе очистки возможно взаимодействие компонентов дымовых газов (кислорода, оксида азота) с NO и NH3. Проскок аммиака зависит от взятого соотношения NH3:NOx: теоретически максимальная степень очистки достигается при соотношении 1:1, но чем выше берется соотношение NH3:NOx, тем выше проскок аммиака.
В литературе отсутствуют данные, позволяющие дать сравнительный анализ ряда способов очистки с применением аммиачной воды, т.к. процессы осуществлялись в несопоставимых условиях (на разных катализаторах при различном составе дымовых газов, при разном соотношении NH3:NOx). Поэтому для оценки эффективности способа с применением аммиачной воды авторами были проведены специальные опыты по очистке дымовых газов на катализаторе ИК-404 на основе окислов титана с использованием дымовых газов следующего состава, об. N2 72, O2 5, CO2 5, H2O 9, CO ≅ 0,1, SO2 ≅ 100 мг/м3, NO2 200 мг/м3 при температуре 380oC и объемной скорости дымовых газов 2000 ч-1.
Результаты опытов приведены в таблице, примеры 1 3. Как видно из полученных данных, увеличение мольного соотношения NH3/NOx от 0,8:1 до 1:1 приводит к увеличению степени очистки газа от 68 до 80% однако при этом значительно возрастает проскок аммиака от 12 до 21 см3/м3.
Недостатками этого способа являются низкая степень очистки от окислов азота и большой проскок аммиака, что делает этот способ неприменимым при проскоке аммиака выше 10 см3/м3.
Целью настоящего изобретения является повышение степени очистки и уменьшение проскока аммиака.
Поставленная цель достигается способом очистки дымовых газов от окислов азота селективным каталитическим восстановлением 10% аммиачной водой, в которую дополнительно вводят полиэтиленгликоль ПЭГ-600 в количестве 0,1 0,5 мас.
В аммиачную воду вводится полиэтиленгликоль марки ПЭГ-600, выпускаемый по ТУ-614-909-80. Он представляет собой вазелинообразную массу с температурой плавления 40oC, хорошо растворимую в воде. Этот продукт применяется в текстильной, фармацевтической промышленности благодаря своим поверхностно-активным свойствам. О применении ПЭГ в процессе очистки дымовых газов неизвестно.
При введении в 10% аммиачную воду полиэтиленгликоля, который благодаря хорошей растворимости в воде образует коллоидный раствор, такое действие ПЭГ может быть связано с образованием комплекса ПЭГ-аммиак, т.к. полиэтиленгликоли имеют склонность к комплексообразованию. Адсорбционная способность такого комплекса на поверхности катализатора гораздо выше, чем газообразного аммиака, а следовательно, повышается общая скорость процесса, которая определяется скоростью стадии взаимодействия NO с адсорбированным аммиаком
Не исключается и возможность взаимодействия продуктов разложения ПЭГ под действием высоких температур (формальдегида, кислот) с компонентами дымовых газов и аммиаком, что также приводит к снижению содержания NO и NH3 в очищенных дымовых газах. Так известно, что полигликоли при высоких температурах (выше 300) разлагаются с выделением низкомолекулярных продуктов - формальдегид, спиртов). Такое свойство ПЭГ может обеспечивать его определенную концентрацию на поверхности катализатора и в то же самое время не приводить к его накоплению за счет постоянного выхода с поверхности катализатора в виде продуктов разложения.
Положительный эффект от введения ПЭГ может достигаться так же и за счет влияния ПЭГ на свойства аммиачной воды в его присутствии: известно, что ПЭГ являются поверхностно-активными веществами. Это свойство может способствовать более тонкому диспергированию аммиачной воды, а следовательно, лучшему контакту и распределению ее в дымовых газах, что так же является фактором, повышающим эффективность процесса.
Предлагаемый способ осуществляется следующим образом.
Через дымовую трубу с катализаторным блоком пропускается очищаемый газ с объемной скоростью 2000 ч-1 и температурой 380oC. В процессе используется катализатор ИК-404 сотовой структуры с размером от 75 х 75 х 150 мм, размером каналов 4,1 х 4,1 мм и удельной внешней поверхностью 672 м2/м3 (тот же, что и в прототипе).
Аммиачная вода используется в виде 10%-ного водного раствора, в которую вводится ПЭГ в количестве в соответствии с заданной концентрацией и который благодаря хорошей растворимости в воде образует однородный раствор.
Аммиачная вода вводится в дымовую трубу через распределительное устройство, расположенное перед катализаторным блоком, и ее подача-расход регулируется вентилем и контролируется ротаметром.
Расход аммиачной воды рассчитывается, исходя из концентрации окислов азота в очищаемом газе , расхода очищаемого газа Φ нм3/ч и заданного мольного соотношения NH3/NOx.
Расход 10%-ной аммиачной воды рассчитывается по формуле
Примеры осуществления способа приведены ниже.
Пример 4. Очистка дымовых газов с расходом 2000 нм3/ч и проводится путем введения в поток очищаемых дымовых газов 10%-ного раствора аммиачной воды в количестве 0,6085 г/м3ч, в которой содержится ПЭГ в концентрации 0,05 вес. что соответствует соотношению 0,8.
Аммиачная вода, содержащая 0,05% ПЭГ, вводится перед катализаторным блоком. Используемый катализатор ИК-404 на основе диоксида титана с размером сот 75х75х150 мм, размером каналов 4,1х4,1 мм и удельной внешней поверхностью 672 мг/м3.
Концентрация окислов азота в очищенном газе , концентрация аммиака , степень очистки газа от окислов азота 71%
Пример 5. Способ осуществляется по примеру 4. Начальная концентрация диоксида азота , расход аммиачной воды с 0,1 мас. ПЭГ-600-0,5915 г/м3ч (х-соотношение NH3: NOx 0,8). Очищенный газ: , , степень очистки газа от окислов азота 73%
Пример 6. Способ осуществляется по примеру 4. , расход аммиачной воды с 0,25% ПЭГ-6 0,6215 г/м3•ч, х 0,8. Очищенный газ: , , степень очистки 74%
Пример 7. Способ осуществляется по примеру 4. 212 мг/м3, расход аммиачной воды с 0,5% ПЭГ 0,6275 г/м3•ч, х 0,8. Очищенный газ: , степень очистки 76%
Пример 8. Способ осуществляется по примеру 4. , расход аммиачной воды с 1% ПЭГ 0,6245 г/м3•ч, х 0,8. Очищенный газ: 38,6 мг/м3, , степень очистки 78%
Пример 9. Способ осуществляется по примеру 4. , расход аммиачной воды с 0,05% ПЭГ 0,7770 мг/м3•ч; х 1,0. Очищенный газ: , степень очистки 87%
Пример 10. Способ осуществляется по примеру 4. , расход аммиачной воды с 0,1% ПЭГ 0,7920 г/м3•ч, х 1,0. Очищенный газ: , степень очистки 90%
Пример 11. Способ осуществляется по примеру 4. , расход аммиачной воды 0,7845 г/м3 с концентрацией ПЭГ 0,25% х 1. Очищенный газ: , степень очистки 92%
Пример 12. Способ осуществляется по примеру 4. , расход аммиачной воды с концентрацией ПЭГ 0,5% х 1. Очищенный газ: , степень очистки газа 93%
Пример 13. Способ осуществляется по примеру 5. , расход аммиачной воды с концентрацией ПЭГ 0,75% х 1. Очищенный газ: , степень очистки газа 93%
Как видно из результатов, приведенных в таблице (примеры 4 13), степень очистки дымовых газов от окислов азота с введением в 10% аммиачный раствор 0,05 0,75% ПЭГ возрастает:
при соотношении NH3:NOx 0,8:1 с 68% до 78%
при соотношении NH3:NOx 1:1 с 80% до 93%
При этом проскок аммиака концентрация аммиака в очищенном газе снижается:
при х 0,8 с 12 см3/м3 до 5 см3/м3,
при х 1 с 21 см3/м3 до 5 см3/м3.
При этом повышение концентрации ПЭГ в аммиачной воде выше 0,5% не приводит к существенному улучшению степени очистки от окислов азота и уменьшению проскока аммиака.
Использование аммиачной воды с концентрацией ПЭГ-600 ниже 0,1% не дает существенного уменьшения проскока аммиака в очищенном газе. Поэтому наиболее эффективно использование 10%-ного водного раствора аммиачной воды, в которую дополнительно вводят 0,1 0,5% полиэтиленгликля.
Использование предлагаемого способа позволит
повысить степень очистки дымовых газов от окислов азота с 68% до 93%
уменьшить проскок аммиака до 5 см3/м3.
название | год | авторы | номер документа |
---|---|---|---|
ОДОРАНТ ДЛЯ ПРИРОДНОГО ГАЗА | 1992 |
|
RU2041243C1 |
ОДОРАНТ ДЛЯ СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1992 |
|
RU2051168C1 |
СПОСОБ ПОДГОТОВКИ СЕРОВОДОРОДСОДЕРЖАЩЕЙ НЕФТИ | 1993 |
|
RU2071377C1 |
СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНОЙ СЕРЫ | 1992 |
|
RU2023655C1 |
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНЫХ ГАЗОВ ОТ МЕРКАПТАНОВ | 1991 |
|
RU2023486C1 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКИСЛОВ СЕРЫ И АЗОТА | 1991 |
|
RU2006268C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМООКСИДНОГО КАТАЛИЗАТОРА ВЫДЕЛЕНИЯ КИСЛЫХ ГАЗОВ ПО ПРОЦЕССУ КЛАУСА | 1992 |
|
RU2048908C1 |
СПОСОБ ПОЛУЧЕНИЯ СТАБИЛЬНОЙ СУСПЕНЗИИ ДЕТОНАЦИОННЫХ НАНОАЛМАЗОВ | 2008 |
|
RU2384524C2 |
СПОСОБ СЕЛЕКТИВНОЙ КАТАЛИТИЧЕСКОЙ ОЧИСТКИ ВЫХЛОПНЫХ И ТОПОЧНЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2011 |
|
RU2481890C1 |
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ОТ АММИАКА | 1992 |
|
RU2064816C1 |
Использование: газоочистка в газовой, нефтеперерабатывающей промышленности, а также на теплоэнергетических установках. Сущность изобретения: очистка дымовых газов от окислов азота заключается в селективном каталитическом восстановлении 10%-ной аммиачной водой, в которую дополнительно вводят полиэтиленгликоль ПЭГ-600 в количестве 0,1 - 0,5 мас.%. 1 табл.
Способ очистки дымовых газов от окислов азота селективным каталитическим восстановлением аммиачной водой, отличающийся тем, что аммиачную воду используют с концентрацией 10 мас. по аммиаку и дополнительно в нее вводят полиэтиленгликоль в количестве 0,1 0,5 мас.
Технологические аспекты охраны окружающей среды | |||
Приспособление для установки двигателя в топках с получающими возвратно-поступательное перемещение колосниками | 1917 |
|
SU1985A1 |
Авторы
Даты
1996-12-20—Публикация
1993-02-04—Подача