Изобретение относится к экспериментальной аэродинамики и могут быть использованы в отраслях промышленности, занимающихся проектированием и созданием транспортных средств (ТС) различного назначения: в самолетостроении, ракетостроении, автомобилестроении и др. отраслях.
Известен способ определения аэродинамических характеристик (ТС) на модели ТС, установленной на державке в аэродинамической трубе, заключающийся в определении с помощью тензовесов усилий, действующих на модель при воздействии набегающего потока, по которым рассчитывают аэродинамические характеристики ("Ракетная техника и космонавтика", том 7, N 1, январь 1969 г. стр. 111 116, [1]).
Известно устройство для определения аэродинамических характеристик ТС на модели ТС, содержащее модель ТС, установленную на тензовесы, державку, выполненную с углом заклинения к набегающему потоку (см. [1] рис. 3).
Недостатком известных технических решений является ограниченные экспериментальные возможности исследований аэродинамических характеристик по углам атаки и отсутствии возможности исследований при изменении угла крена модели.
Существенным недостатком этих технических решений являются такие значительные экспериментальные затраты на проведение эксперимента в аэродинамической трубе, обусловленные необходимостью остановки трубы для перемонтажа модели при проведении эксперимента на каждом фиксированном угле атаки и угле крена модели.
Наиболее близким к предлагаемым и принятыми авторами за прототипы являются:
способ определения аэродинамических характеристик ТС на модели ТС, установленной на державке в аэродинамической трубе, заключающийся в определении с помощью тензовесов усилий, действующих на модель при взаимодействии набегающего потока и изменении угла крена модели, по которым рассчитывают аэродинамические характеристики ("ракетная техника и космонавтика", том. 8, N 11, ноябрь, 1970 г, стр. 42 49, [1]);
устройство для определения аэродинамических характеристик ТС на модели ТС, содержащее модель ТС, установленную на тензовесах, державку, выполненную с углом заключения к оси державки, привод изменения угла крена модели (см. [2] рис. 2).
Указанные технические решения обеспечивают проведение аэродинамических исследований на модели ТС при изменении угла крена модели в процессе эксперимента, однако приводят к увеличению материальных затрат вследствие проведения эксперимента на фиксированных углах атаки при фиксированных углах заклинания державки.
Отличие предлагаемого технического решения, способа определения аэродинамических характеристик ТС на модели ТС, от известного заключается в том, что в известном способе, заключающемся в определении с помощью тензовесов усилий, действующих на модель при воздействии набегающего потока и изменении угла крена в процессе этого воздействия, по которым рассчитывают аэродинамические характеристики, согласно изобретению, определение усилий осуществляют при изменении угла заклинения державки и при одновременном изменении угла крена модели в процессе эксперимента без останова трубы, при этом угол заклинения державки изменяют в диапазоне от 0 до 90 градусов.
Отличие предложенного технического решения, устройства для определения аэродинамических характеристик ТС на модели ТС, заключается в том, что известное устройство, содержащее модель ТС, установленную на тензовесах, державку, выполненную с углом заклинения, привод изменения угла крена модели, согласно изобретению, устройство снабжено приводом изменения угла заклинения державки, хвостовая державка выполнена из соединенных между собой подвижного и неподвижного элементов, у который подвижный элемент соединен с приводом изменения угла крена, а неподвижный элемент соединен с узлом крепления державки к аэродинамической трубе и в ней смонтирован привод изменения угла заклинения державки, причем торец неподвижного элемента державки выполнен в виде полой шаровой опоры с отверстием на ее поверхности, а неподвижный торцевой элемент державки выполнен в виде сферической обоймы, внутри которой размещена шаровая опора, при этом на внутренней стенке подвижного элемента державки жестко смонтирован кронштейн, размещенный через отверстие внутри шаровой опоры и консольно соединенный с приводом изменения угла заклинения державки.
Определение с помощью тензовесов усилий, действующих на модель при воздействии набегающего потока, при изменении угла заклинения державки и угла крена модели в процессе испытаний в предложенном способе и снабжение устройства приводом изменения угла заклинения державки, выполненной из соединенных между собой подвижного и неподвижного элементов с возможностью изменения угла заклинения державки посредством привода изменения угла заклинения и соединение подвижного элемента державки с приводом изменения угла крена модели, обеспечивают определение аэродинамических характеристик на модели ТС в процессе одного эксперимента без останова аэродинамической трубы.
По сравнению с прототипами, заявляемые технические решения позволяют сократить время работы аэродинамической трубы, так как исключается необходимость приведения серии экспериментов на устройствах с различными углами заклинения державки, а также повысить точность определения аэродинамических характеристик, поскольку в процессе одного эксперимента в отличии от серии экспериментов точнее выдерживаются параметры аэродинамического потока.
Вместе с тем, заявленные способ и устройство исключают изготовление серии державок с различными углами заклинения державки, тем самым сокращаются материальные затраты на изготовление устройства.
На фиг. 1 представлена компоновка устройства по предложенному техническому решению с углом заклинения державки 3.
На фиг. 2 представлен узел державки с приводом изменения угла заклинения державки и проиллюстрировано заклинение державки на максимально возможный угол βo.
На фиг. 3 в дополнение к фиг. 2 представлены варианты с различными углами заклинения державки в процессе работы устройства.
Предложенное устройство (фиг. 1) содержит модель 1 ТС, установленную на тензовесах 2, державку 3, выполненную с углом заклинения β, привод 4 изменения угла крена модели, выполненный в виде электромотора.
Хвостовая державка выполнена из соединенных между собой подвижного 5 и неподвижного 6 элементов. Подвижный 5 элемент соединен с осью электромотора, а неподвижный 6 элемент соединен с узлом 7 крепления державки к аэродинамической трубе и в ней смонтирован привод 8 изменения угла b заклинения державки.
Торец неподвижного элемента державки (на фиг. 2) выполнен в виде полой шаровой опоры 9 с отверстием на ее поверхности, а подвижный торцевой элемент державки выполнен в виде сферической обоймы 10, внутри которой размещена шаровая опора 9, при этом на внутренней стенке подвижного элемента державки жестко смонтирован кронштейн 11, размещенный через отверстие внутри шаровой опоры 9 и консольно соединенный с приводом изменения угла заклинения державки. Подвижный 5 элемент державки соединен с неподвижным с помощью оси 12.
Привод 8 изменения угла заклинения державки может быть выполнен в виде гидроцилиндра, поршень 13 со штоком 14 которого перемещается в корпусе 15. Корпус 15 со штоком 14 с помощью шарниров 16 и 17 соединены соответственно с неподвижным 6 и посредством кронштейна 11 с подвижным 5 элементами державки.
Предложенный способ определения аэродинамических характеристик ТС на модели ТС реализуется следующим образом.
Устройство (фиг. 1) крепят к узлу 7 аэродинамической трубы. С помощью гидроцилиндра фиксируют державку под начальным углом заклинения державки к ее оси bo. Модель нагружают аэродинамическим потоком со скоростью v∞. В процессе эксперимента модель вращают с помощью привода 4 изменения угла крена, обеспечивая круговой обдув модели по углу крена под заданным углом атаки α (здесь a угол между вектором скорости набегающего потока v∞ и осью подвижного элемента державки).
После полного оборота вокруг своей оси модели фиксируют в первоначальном положении по углу крена. В гидроцилиндр по шлангу 18 подают управляющее давление жидкости (при этом шланг 19 перекрывают), посредством которого поршень 13 со штоком 14 передает усилие на кронштейн 11, жестко установленный на стенке подвижного элемента 5 державки, перемещает ее на заданный угол и фиксирует ее в этом положении (β1=βo+Δβ).. Процесс вращения модели и перемещение модели относительно набегающего потока повторяется вновь, но теперь уже при угле атаки модели, соответствующем новому углу заклинения державки (β2=β1+Δβ). Изменение угла заклинения державки продолжается до тех пор, пока не будет исчерпан весь программный диапазон изменения угла атаки.
На фиг. 3 (поз. а и б) иллюстрируется работа механизма перемещения подвижного элемента державки, соответствующее углам заклинения державки β1 и β2.
В процессе проведения эксперимента показания тензометров тензовесов преобразуются в показания электрических сигналов и по кабелю 20 передаются на регистрирующую аппаратуру.
Таким образом, в процессе одного запуска аэродинамической трубы производят определение усилий при изменении угла заклинения державки и угла крена модели, при этом угол заклинения державки изменяют в диапазоне от 0 до 90o. При этом могут быть получены как сетки аэродинамических характеристик в зависимости от изменения углов атаки и крена модели, так и аэродинамические характеристики для конкретных траекторий по заданному закону изменения углов атаки и крена по времени за счет перемещения модели с требуемыми скоростями от привода модели.
Предложенные технические решения повышают эффективность исследований за счет сокращения эксплуатационных расходов на проведение эксперимента, а также позволяют расширить диапазоны исследований влияния углов атаки на аэродинамические характеристики по сравнению со стандартными устройствами перемещения модели в плоскости углов атаки (до ≈20o), смонтированными в стойках современных аэродинамических труб (Е. Л. Бедржицкий и др. "Теория и практика аэродинамического эксперимента", М. из-во МАИ, 1990 г. стр. 115, рис. 4. 12).
Изобретение относится к экспериментальной аэродинамике и может быть использовано в отраслях промышленности, занимающихся проектированием и созданием транспортных средств различного назначения. Устройство для определения аэродинамических характеристик транспортного средства снабжено приводом 8 изменения угла атаки модели, державка состоит из соединенных между собой подвижного 5 и неподвижного 6 элементов, у которой подвижный элемент 5 соединен с приводом изменения угла крена, а неподвижный элемент 6 соединен с углом 7 крепления державки к аэродинамической трубе. Причем торец неподвижного элемента 6 державки заполнен в виде шаровой опоры 9 с отверстием на ее поверхности, а торец подвижного элемента 5 державки - в виде сферической обоймы 10, внутри которой размещена шаровая опора 9. На внутренней стенке подвижного элемента 5 державки жестко смонтирован кронштейн 11, размещенный через отверстие внутри шаровой опоры 9 и консольно соединенный с приводом 8 изменения угла атаки модели. Изобретение позволяет повысить эффективность исследований за счет сокращения времени работы аэродинамической трубы, повысить точность определения аэродинамически характеристик, а также расширить диапазоны исследований влияния углов атаки по сравнению со стандартными устройствами. При этом могут быть получены как сетки аэродинамических характеристик в зависимости от изменения углов атаки и крена модели, так и аэродинамические характеристики для конкретных траекторий по заданному закону изменения углов атаки и крена по времени за счет перемещения модели с требуемыми скоростями от привода модели. 2 с. и 1 з.п. ф-лы, 4 ил.
Авторское свидетельство СССР N 227645, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Ра- кетная техника и космонавтика, т | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Говорящий кинематограф | 1920 |
|
SU111A1 |
Ракетная техника и космонавтика, т | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Авторы
Даты
1997-03-20—Публикация
1992-03-13—Подача