СПОСОБ ДООБОГАЩЕНИЯ МАГНЕТИТОВОГО КОНЦЕНТРАТА Российский патент 1997 года по МПК B03C1/00 B03B7/00 

Описание патента на изобретение RU2077390C1

Изобретение относится к области обогащения полезных ископаемых, а именно к первичной переработке руд, содержащих сильномагнитные минералы, например магнетитовых, титаномагнетитовых.

Известны способы обогащения магнетитовых руд, включающие стадиальное измельчение и сепарацию руды с выводом в каждой стадии обогащения отвальных хвостов. Обогащенный магнетитом промпродукт каждой стадии является питанием последующей стадии, причем в каждой стадии наличие и последовательность операций классификации, дешламации и магнитной сепарации может быть различной. Для обогащения черновых магнетитовых концентратов, получаемых в предпоследней стадии обогащения, применяют технологию, основанную на классификации в гидроциклоне магнитного продукта (чернового концентрата), измельчение песковой фракции гидроциклона в замкнутом цикле, стадиальное магнитное обогащение слива гидроциклона с получением готового концентрата и отвальных хвостов.

В зависимости от вещественного состава, крупности магнитного продукта и требований к качеству конечного концентрата используют различные модификации этой технологии, например:
путем включения операций магнитного обогащения измельченной песковой фракции гидроциклона и возврата на доизмельчение полученного магнитного продукта [1]
Известны также технологические решения дообогащения магнетитовых концентратов, получаемых в последней стадии обогащения, путем дополнительной их классификации в гидроциклонах или на грохотах с получением грубозернистой фракции, направляемой на доизмельчение, и тонкозернистого продукта, который в зависимости от состава может являться готовым концентратом или подвергаться дешламации и дополнительной магнитной сепарации [1, 2]
Другой вариант дообогащения магнетитового концентрата включает его классификацию в гидроциклоне, магнитную сепарацию песковой фракции, обесшламливание сливной фракции, объединение полученных магнитных продуктов и их сепарацию в магнитном поле пониженной напряженности с получением готового концентрата и промежуточного продукта [3]
Основным недостатком данных способов дообогащения магнетитовых концентратов является высокое энергоснабжение особенно в цикле измельчения из-за малой эффективности операций классификации. При стадиальном обогащении магнетитовых руд осуществляемая классификация магнитного продукта перед каждой стадией измельчения приводит к тому, что значительное количество сростков минуя все стадии измельчения попадают в последнюю стадию обогащения, где выделяются в концентраты и снижают его качество. Это объясняется тем, что классификация в гидроциклоне происходит по двум физическим признакам: крупности и плотности частиц, в результате чего в слив вместе с тонкими частицами свободных рудных минералов также переходят более крупные их сростки с породообразующими минералами, а в песковой фракции наряду с крупными сростками концентрируется значительное количество свободных рудных зерен. В результате этого перераспределения свободных рудных минералов и их сростков в продуктах классификации в гидроциклоне проходит малоэффективно [1, с.76, табл.5.2] Причем по мере уменьшения крупности материала, поступающего на классификацию, разница в содержании сростков в сливе и песках гидроциклонирования уменьшается, а при крупности менее 50 мкм является незначительной. Классификация на грохотах обеспечивает несколько лучшее перераспределение сростков в продуктах классификации, чем в гидроциклонах, за счет исключения попадания в тонкозернистую фракцию грубозернистого сросткового материала, но имеет также общие недостатки, в результате чего направляемый на измельчение надрешетный продукт содержит значительную часть раскрытых рудных минералов, а содержащиеся в подрешетном продукте мелкозернистые сростки при магнитной сепарации переходят в концентрат.

При измельчении грубозернистых продуктов классификации, в которых содержится большое количество раскрытой рудной фазы, происходит низкая степень раскрытия сростков, так как энергия измельчающих тел расходуется пропорционально количеству раскрытой и сростковой фракций. То есть при измельчении указанных продуктов происходит в большой степени переизмельчение свободных рудных минералов, чем раскрытие их сростков, что снижает эффективность последующей магнитной сепарации.

Известен также способ магнитного обогащения, включающий разделение исходного продукта в гидроциклоне на крупную и тонкую фракции, магнитную сепарацию крупной фракции с выделением магнитного промпродукта и хвостов, измельчение магнитного промпродукта, разделение измельченного магнитного продукта в гидроциклоне на тонкую и крупную фракции, магнитную сепарацию крупной фракции с получением хвостов и магнитного продукта, измельчение последнего, объединение тонких фракций, полученных при классификации в гидроциклоне исходного продукта, и измельчению магнитного промпродукта, их обесшламливание и магнитную сепарацию с выделением концентрата, хвостов и промпродуктов, объединяемого с измельченным магнитным продуктом [4]
Данный способ хотя и позволит в начальной стадии вывести из последующего цикла измельчения до 35-65% исходного материала, но ему присущи те же недостатки, характерные при классификации в гидроциклоне: перевод в слив относительно грубозернистых сростков магнетита, а в песковую фракцию - свободных частиц магнетита. Кроме этого, объединение слив гидроциклонов, содержащих разное количество рудных минералов снижает эффективность последующей магнитной сепарации.

Из известных способов наиболее близким к предлагаемому является способ обогащения магнетитовых руд, включающий измельчение, классификацию, дешламацию и магнитную сепарацию с получением отвальных хвостов и чернового магнетитового концентрата, который подвергается магнитно-гравитационной классификации (МГК) в восходящем водном потоке и однородном магнитном поле с получением тонкозернистого готового концентрата и грубозернистого продукта, направленного на доизмельчение и концентрацию [5] Этот способ взят за прототип.

Благодаря тому, что МГК осуществляется по трем физическим признакам: крупности, плотности и магнитным свойствам минеральных комплексов, этот способ позволяет более эффективно выводить из процесса обогащения свободную рудную фазу. Однако решение поставленной задачи получение за счет применения МГК готового концентрата в виде тонкозернистого продукта, не достигается, особенно в случае классификации грубозернистых полидисперсных черновых магнетитовых концентратов, содержащих не более 50-60% класса 50 мкм вследствие низкой эффективности МГК крупных классов (более 100 мкм) и больших потерь при этом мелких свободных рудных частиц (менее 20-40 мкм) с грубозернистым продуктом. Это объясняется тем, что параметры МГК зависят от крупности классифицируемого продукта: напряженность магнитного поля изменяется обратно пропорционально, а скорость восходящего водного потока прямо пропорционально крупности частиц.

Настоящее изобретение направлено на снижение энергозатрат и повышение эффективности дообогащения чернового магнетитового концентрата путем последовательного применения классификации исходного магнитного продукта методами тонкого грохочения и магнитно-гравитационного.

Это обеспечивает получение готового тонкозернистого концентрата заданного химического и гранулометрического состава за счет эффективного перевода в грубозернистый продукт сросткового материала, который направляют на доизмельчение и сепарацию в отдельном цикле.

Сущность предлагаемого способа дообогащения магнетитового концентрата заключается в том, что черновой магнетитовый концентрат подвергают классификации, например, тонким грохочением, тонкозернистую фракцию грохочения направляют на магнитно-гравитационную классификацию в восходящем водном потоке и магнитном поле с получением готового концентрата в виде тонкозернистого продукта и грубозернистых хвостов, а грубозернистую фракцию грохочения направляют на измельчение и магнитную сепарацию с получением готового концентрата и отвальных хвостов. Грубозернистую фракцию грохочения перед измельчением подвергают магнитно-гравитационной классификации с получением магнитного продукта и отвальных грубозернистых хвостов.

В результате проведенного патентного поиска не были обнаружены среди других объектов отличительные признаки в сочетании и очередности проведения операций тонкого грохочения и магнитно-гравитационной классификации, что свидетельствует о новизне заявленного технического решения.

Сущность решения поясняется фиг.1, где изображена технологическая схема, устанавливающая последовательность выполнения операций для осуществления предлагаемого дообогащения магнетитового концентрата.

Способ осуществляют следующим образом. Исходный черновой магнетитовый концентрат подвергают первичной классификации методом тонкого грохочения, например, на вибрационных грохотах, с получением грубозернистого и тонкозернистого продуктов. При этом происходит перераспределение свободных рудных минералов и их сростков пропорционально их содержанию в классах крупности исходного концентрата. Выбор класса крупности при грохочении определяют исходя из степени раскрытия рудных минералов в исходном концентрате, требований по гранулометрическому и химическому составам составу к конечному концентрату, а также особенностей проведения последующей магнитно-гравитационной классификации. Тонкозернистый продукт грохочения, представленный крупностью менее 100 мкм, направляют на вторичную классификацию магнитно-гравитационным методом с получением готового концентрата в виде тонкозернистого продукта и грубозернистого продукта, в котором концентрируется основная масса сросткового материала. Грубозернистый продукт грохочения подвергают измельчению и последующему обогащению с получением готового концентрата и отвальных хвостов.

В зависимости от вещественного состава, распределения железа по классам крупности грузозернистый продукт грохочения дополнительно подвергают магнитно-гравитационной классификации в отдельном цикле с выводом полученного грубозернистого продукта в хвосты (фиг.2).

При получении высококачественных магнетитовых концентратов (более 70% железа) грубозернистая фракция МГК подрешетного продукта грохочения может содержать более 30% железа. Поэтому для уменьшения потерь железа этот продукт после сгущения направляют на доизмельчение (фиг.3, 4).

Параметры МГК (напряженность магнитного поля, скорость восходящего водного потока) подбирают с учетом крупности исходного продукта и требований к качеству конечного продукта.

Предлагаемое технологическое решение позволяет снизить на 20-30% затраты в последней стадии измельчения, получать магнетитовые концентраты заданного химического и гранулометрического составов.

Сущность изобретения поясняется следующими примерами дообогащения магнетитового концентрата II стадии обогащения Костомукшского ГОК'а (56% железа, 20,5% кремнезема, 50% класса 50 мкм) с целью получения концентратов, соответствующих мировому уровню (69-70% железа и 2-4% кремнезема).

Измельчение грубозернистых продуктов классификации во всех стыках проводилось до одинаковой крупности: 94% класса 50 мкм.

Пример 1. Дообогащение концентрата проводилось по способу, описанному в [5, прототип] включающему МГ-классификацию исходного продукта с получением тонкозернистой фракции в виде готового концентрата, доизмельчением до 94% класса 50 мкм грубозернистого продукта и последующим магнитным обогащением с получением готового концентрата и отвальных хвостов. При оптимальных параметрах МГ-классификации по данному способу получен грубозернистый концентрат с содержанием только 68% железа и 4,5% кремнезема и тонкоизмельченные хвосты (оп. 1, табл.).

Пример 2. Исходный концентрат по заявленному способу (фиг.1) подвергался классификации методом тонкого грохочения по классу 71 мкм, подрешетный продукт грохочения направлялся на МГ-классификацию с получением готового концентрата в виде тонкозернистого продукта. Надрешетный продукт грохочения после измельчения до крупности 94% класса 50 мкм направлялся на магнитную сепарацию с получением готового концентрата и отвальных хвостов.

Дообогащение концентрата по заявленному способу обеспечивает по сравнению с прототипом повышение содержания железа в готовом концентрате с 68 до 69,3% при близкой крупности готовых концентратов (75-77% класса 50 мкм). По заявленному способу получаются более грубозернистые хвосты (оп. 2, табл.).

Пример 3. Введение операции МГ-классификации надрешетного продукта тонкого грохочения (фиг. 2) позволяет при достигнутом в оп.2 качестве готового концентрата снизить на 22% (относительных) количество материала, направляемого на измельчение, и получать грубозернистые хвосты, содержащие 54% класса 50 мкм (оп.3. табл.).

Пример 4. Для получения высококачественного концентрата (не менее 70% железа и не более 2,5% кремнезема), пригодного для электрометаллургического производства стали был изменен режим МГ-классификации подрешетного продукта тонкого грохочения, а получаемый при этом грубозернистый продукт МГ-классификации после сгущения направлялся на измельчение вместе с надрешетным продуктом тонкого грохочения (фиг.3).

Данный способ обеспечивает получение готового концентрата заданного качества при незначительном увеличении нагрузки на измельчение (оп.4, табл.).

Пример 5. При включении в схему (фиг.3) дополнительной операции МГ-классификации надрешетного продукта тонкого грохочения (фиг.4) обеспечивается получение готового концентрата с содержанием 70,4% железа без увеличения нагрузки на измельчение (оп.5, табл.).

Таким образом, приведенные в таблице данные показывают, что последовательное применение тонкого грохочения и МГ-классификации при дообогащении магнетитового концентрата обеспечивает повышение эффективности процесса и снижение затрат при получении высококачественных железных концентратов и грубозернистых хвостов.

Похожие патенты RU2077390C1

название год авторы номер документа
СПОСОБ ПОВЫШЕНИЯ КАЧЕСТВА МАГНЕТИТОВЫХ КОНЦЕНТРАТОВ 2020
  • Исмагилов Ринат Иршатович
  • Голеньков Дмитрий Николаевич
  • Шарковский Дмитрий Олегович
  • Шелепов Эдуард Владимирович
  • Сычев Андрей Александрович
  • Игнатова Татьяна Васильевна
RU2751185C1
СПОСОБ ПРОИЗВОДСТВА МАГНЕТИТОВЫХ КОНЦЕНТРАТОВ ПОВЫШЕННОГО КАЧЕСТВА 2020
  • Эфендиев Назим Тофик Оглы
  • Угаров Андрей Алексеевич
  • Исмагилов Ринат Иршатович
  • Голеньков Дмитрий Николаевич
  • Козуб Александр Васильевич
  • Гридасов Игорь Николаевич
  • Хромов Владимир Валериевич
  • Левшин Александр Валентинович
  • Сенченко Аркадий Евгеньевич
  • Куликов Юрий Вадимович
  • Игнатова Татьяна Васильевна
  • Шарковский Дмитрий Олегович
RU2754695C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЛЕКТИВНОГО КОНЦЕНТРАТА ИЗ ЖЕЛЕЗИСТЫХ КВАРЦИТОВ 2012
  • Скороходов Владимир Федорович
  • Хохуля Михаил Степанович
  • Опалев Александр Сергеевич
  • Сытник Максим Владимирович
  • Бирюков Валерий Валентинович
RU2533792C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОГО МАГНЕТИТОВОГО КОНЦЕНТРАТА 2012
  • Гзогян Татьяна Николаевна
  • Гзогян Семен Райрович
  • Винников Владимир Александрович
  • Чантурия Елена Леонидовна
RU2535722C2
Способ обогащения магнетитовых руд 1990
  • Усачев Петр Александрович
  • Опалев Александр Сергеевич
  • Коротаев Геннадий Михайлович
  • Смирнов Андрей Алексеевич
  • Шилинг Отто Оттович
SU1738361A1
СПОСОБ ОБОГАЩЕНИЯ КОНЕЧНОГО МАГНЕТИТОВОГО КОНЦЕНТРАТА МОКРОЙ МАГНИТНОЙ СЕПАРАЦИИ ЖЕЛЕЗИСТЫХ КВАРЦИТОВ 2004
  • Малявин Борис Яковлевич
  • Бородин Александр Алексеевич
  • Жилин Сергей Николаевич
  • Леонов Александр Сергеевич
  • Прадедов Александр Алексеевич
  • Чумаков Василий Акимович
  • Челышкина Валентина Васильевна
  • Усов Олег Александрович
RU2277439C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЛЕКТИВНОГО КОНЦЕНТРАТА ИЗ СМЕШАННЫХ ТОНКОВКРАПЛЕННЫХ ЖЕЛЕЗНЫХ РУД 2009
  • Никитин Евгений Николаевич
  • Тютюник Нина Дмитриевна
  • Броницкая Елена Сергеевна
  • Волков Евгений Сергеевич
RU2388544C1
СПОСОБ ОБОГАЩЕНИЯ ЖЕЛЕЗНЫХ РУД 2004
  • Бруев Владимир Петрович
  • Кретов Сергей Иванович
  • Рудской Юрий Михайлович
  • Потапов Сергей Александрович
  • Сафроненков Николай Иванович
RU2290999C2
СПОСОБ МОКРОГО МАГНИТНОГО ОБОГАЩЕНИЯ МАГНЕТИТОВЫХ КВАРЦИТОВ 2002
  • Ширяев Н.В.
  • Васильев Н.В.
  • Щаденко А.А.
  • Яровая Т.И.
RU2232058C1
СПОСОБ ОБОГАЩЕНИЯ СМЕШАННЫХ ЖЕЛЕЗНЫХ РУД 2004
  • Бруев Владимир Петрович
  • Кретов Сергей Иванович
  • Рудской Юрий Михайлович
  • Потапов Сергей Александрович
  • Сафроненков Николай Иванович
RU2290998C2

Иллюстрации к изобретению RU 2 077 390 C1

Реферат патента 1997 года СПОСОБ ДООБОГАЩЕНИЯ МАГНЕТИТОВОГО КОНЦЕНТРАТА

Использование: обогащение полезных ископаемых, а именно первичная обработка руд, содержащих сильномагнитные минералы, например магнетит, титаномагнетит. Сущность изобретения: черновой магнетитовый концентрат подвергают классификации, например, тонким грохочением. Полученный тонкозернистый продукт направляют на магнитно-гравитационную классификацию с получением готового концентрата в виде тонкозернистого продукта и грубозернистых хвостов, а грубозернистый продукт грохочения направляют на измельчение и магнитную сепарацию с получением готового концентрата и отвальных хвостов. В зависимости от вещественного состава исходного концентрата и требований к качеству конечного концентрата грубозернистый продукт грохочения перед измельчением подвергают магнитно-гравитационной классификации с получением грубозернистых хвостов, а грубозернистый продукт магнитно-гравитационной классификации мелкозернистого продукта грохочения после сгущения направляют на измельчение. 2 з.п. ф-лы, 1 табл., 4 ил.

Формула изобретения RU 2 077 390 C1

1 1. Способ дообогащения магнетитового концентрата, включающий магнитно-гравитационную классификацию магнетитового концентрата в восходящем потоке и магнитном поле с получением готового концентрата, магнитную сепарацию доизмельченных грубозернистых продуктов, отличающийся тем, что перед магнитно-гравитационной классификацией магнетитовый концентрат подвергают классификации тонким грохочением, при этом на магнитно-гравитационную классификацию направляют тонкозернистую фракцию тонкого грохочения и ведут ее с получением грубозернистых хвостов, а грубозернистый продукт тонкого грохочения направляют на доизмельчение с последующей магнитной сепарацией с получением готового концентрата и отвальных хвостов.2 2. Способ по п.1, отличающийся тем, что грубозернистую фракцию тонкого грохочения перед доизмельчением подвергают дополнительной магнитно-гравитационной классификации с получением магнитного продукта и отвальных грубозернистых хвостов.2 3. Способ по п.1, отличающийся тем, что грубозернистые хвосты магнитно-гравитационной классификации после сгущения направляют на измельчение.

Документы, цитированные в отчете о поиске Патент 1997 года RU2077390C1

Остапенко П.Е
Теория и практика обогащения железных руд.- М.: Недра, 1985, с.89 - 91, 127 - 131
RU, патент N 1738359, кл, B 03 B 7/00, 1992
Способ дообогащения магнетитовых концентратов 1986
  • Смышляев Геннадий Константинович
  • Стрелецкий Виктор Григорьевич
  • Цапков Николай Трофимович
  • Карпов Валерий Валентинович
  • Дюльдин Александр Михайлович
  • Жириков Владимир Иванович
SU1351677A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ магнитного обогащения 1990
  • Нотович Григорий Исаакович
  • Ковальчук Хрисанф Устинович
  • Азаматов Фарид Лутфиевич
  • Маргулис Владимир Соломонович
  • Старыгин Иван Васильевич
  • Ворсин Николай Михайлович
  • Юртаева Алла Дмитриевна
  • Басов Анатолий Иванович
  • Рыбалко Константин Эдуардович
SU1766517A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
RU, патент N 1738361, кл
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 077 390 C1

Авторы

Усачев Петр Александрович

Даты

1997-04-20Публикация

1994-04-15Подача