Изобретение относится к области вакуумных технологий и может быть использовано в радиоэлектронной, космической, химической, медико-инструментальной промышленности.
Известен способ осаждения металла на изделие с использованием высокочастотного (ВЧ) плазменного разложения металлоорганических соединений (МОС) [1]
Недостатком данного способа является малая мощность разряда, до 100 Вт, которая не обеспечивает требуемое качество обработанной поверхности и имеет малую производительность.
Известен способ [2] принятый за прототип, плазменного химического осаждения из паровой фазы, содержащей алкоголят металла. Недостатком вышеуказанного способа является нахождение электрода с током высокой частоты в вакуумной камере, что неизбежно приведет к распылению электрода и осаждению материала электрода на поверхность обрабатываемого изделия.
Известно устройство [3] состоящее из разрядной камеры и системы электродов. Разрядная камера содержит центральный ввод плазмообразующего газа. Аксиальная подача обеспечивает хорошее согласование ВЧ-генератора с нагрузкой, высокий КПД.
Недостатком данного устройства является рассогласование генератора с плазмой при подаче в такой плазмотрон металлоорганических соединений (МОС), неполное разложение МОС, оседание ее на внутренней стенке разрядной камеры, что уменьшает ресурс плазмотрона и исключает высокую производительность ВЧ-плазменной установки.
Известны устройства для плазменной обработки поверхности [2; 4-6] в которых разряд зажигается между электродами, расположенными в замкнутом об еме. Недостатком данных устройств является возможность нанесения материала на обрабатываемую поверхность.
Известно устройство для обработки поверхности плазмой, у которой концевой участок патрубка для подачи активного газа расположен между электродами, т.е. не исключается возможность распыления электрода, не предусмотрена возможность подачи МОС [7]
Известен плазмотрон, содержащий разрядную камеру, устройство для возбуждения в камере разряда с соплом для подачи жидкости, принятый за прототип [8] Недостатком вышеуказанного устройства является малый ресурс работы разрядной камеры. Так как при подаче жидкости, в нашем случае МОС, в сопло (патрубок), ось которого образует острый угол с тангенциальным направлением к внутренней поверхности камеры произойдет осаждение МОС на поверхность камеры и нарушится согласование с ВЧ-генератором и возможно расплавление разрядной камеры.
Технической задачей изобретения является модификация поверхности обрабатываемого изделия воздействием потока ВЧ-плазмы, при этом обрабатываемое изделие может быть как металлом, так и диэлектриком, что позволяет расширить функциональные свойства изделий, повысить коррозионную стойкость и устойчивость к бактерицидной обработке.
Поставленная задача реализуется тем, что поверхность обрабатываемого изделия предварительно подвергается воздействию ВЧ-плазмы низкого давления в среде инертного газа, например, аргона, с последующей добавкой в плазмообразующий газ МОС и подачей ее непосредственно в сгусток плазмы. Для осуществления способа используется плазмотрон с разрядной камерой имеющей боковые вводы, расположенные ниже системы электродов и центральный ввод с патрубком, срез которого расположен в области системы электродов. В результате обработки на поверхности обрабатываемого изделия образуется поверхностный слой модифицированный неравновесной плазмой.
Благодаря термической неравновесности ВЧ-плазмы низкого давления обрабатываемое изделие, независимо от вида материала, приобретает отрицательный заряд. Микровыступы и кромки микротрещин становятся концентраторами электрического поля и происходит их бомбардировка ионами. Происходит рекомбинация ионов, распыление микровыступов, залечивание микротрещин, очистка поверхности. При подаче паров МОС с плазмообразующим газом в сгусток плазмы происходит разложение МОС и транспортировка продуктов разложения МОС струей плазмы на поверхность обрабатываемого изделия. Обработка в среде реакционного газа приводит к изменению состава и структуры приповерхностного слоя, что обеспечивает высокую коррозионную стойкость, например, при многократной стерилизации бактерицидной и дезинфекционной обработки. Поверхность приобретает дополнительно новое свойство - незапотевает, например, стоматологическое зеркало с вышеуказанным способом обработки не запотевает в ротовой полости, что естественно повышает ее эксплуатационные качества.
Для осуществления способа используется плазмотрон с разрядной камерой, имеющей боковые вводы, расположенные ниже системы электродов и центральный ввод с патрубком, срез которого расположен в области системы электродов. Смесь МОС с аргоном из смесителя поступает в центральный ввод, верхний срез которого находится на нижней границе плазменного сгустка, на уровне нижнего витка (в случае индукционного разряда). Такое расположение среза обеспечивает попадание МОС непосредственно в область высокого давления, в сгусток плазмы. Если расположить срез ниже МОС не попадает в сгусток, обойдет область высокого давления и разложение будет неполное, МОС осядет на стенке разрядной камеры. При расположении среза выше 1-го витка возможно распыление самого патрубка ввода. Система электродов расположена снаружи разрядной камеры, поэтому исключается распыление электрода и осаждение материала электрода на поверхность обрабатываемого изделия. Такая конструкция плазмотрона позволяет полнее использовать МОС, обеспечить стабильный разряд, защиту внутренней стенки от осаждения МОС, т.е. обеспечивает высокопроизводительную ВЧ-плазменную модификацию поверхности, например, стоматологических зеркал, линз оптических приборов, с большим ресурсом работы разрядной камеры. В результате обработки на поверхности обрабатываемого изделия образуется поверхностный слой модифицированной неравновесной плазмой.
Сущность изобретения поясняется чертежами, где на фиг.1 представлена схема установки ВЧ-плазменной обработки, на фиг.2- разрядная камера.
Установка для ВЧ-плазменной обработки (фиг.1) содержит вакуумную камеру 1, узел подачи 2 обрабатываемых изделий 3 в струю плазмы 4, ВЧ-генератор 6, систему электродов 7, разрядную камеру 8, фильтр поглащения 9 для предотвращения попадания продуктов пиролиза МОС в атмосферу и в вакуумные насосы, вакуумный пост 10, блок питания 11, систему охлаждения 12 разрядной камеры, систему газоснабжения 13, термостатированный смеситель 14 для перемешивания плазмообразующего газа аргона с МОС и предварительного нагрева смеси перед подачей в сгусток плазмы.
Разрядная камера (фиг.2) имеет рубашку охлаждения, содержит центральный аксиальный ввод 16 для подачи из смесителя паров МОС с инертным газом, срез 17 которого расположен на уровне нижнего витка индуктора. Имеются боковые тангенциальные вводы 18 для подачи плазмообразующего газа, ввод для подачи 19 и слива воды из рубашки охлаждения.
В вакуумной камере 1 благодаря вакуумному посту 10 создается низкое давление. При наложении электрического поля в индуктор 7 в разрядной камере 8 возникает плазменный сгусток. При продуве через плазменный сгусток реакционного газа образуется плазменная струя инструмент обработки. При подачи инертного газа только в боковые вводы 18 происходит предварительная обработка поверхности изделия: дополировка, залечивание микротрещин, очистка и активация поверхности и т.д. При подаче в центральный ввод 16 смеси паров МОС с рабочим газом из смесителя 14 происходит модификация поверхности: изменение структуры, состава поверхности. Благодаря тому, что срез центрального ввода находится на уровне нижнего витка, пары МОС попадают непосредственно в плазменный сгусток, где происходит их разложение и плазменная струя транспортирует их на поверхность обрабатываемого изделия. Существенным является обязательная подача инертного газа в боковые вводы при подачи смеси в центральный ввод. Так как при подачи в боковые вводы плазмообразующего газа происходит его закрутка и образуется при внутренней поверхности разрядной камеры защитный слой, который предохраняет внутреннюю поверхность от нанесения МОС, что позволяет увеличить ресурс работы разрядной камеры и обеспечить высокую производительность обработки.
Нижняя граница расхода аргона Gарг. 0,02 г/с обусловлена возможность эффективной очистки поверхности изделия перед нанесением покрытия и возможностью защиты внутренней стенки плазмотрона от осаждения МОС и обеспечения стабильного разряда. Расход аргона выше верхней границы Gарг. 0,12 г/с приводит к перегреву поверхности обрабатываемого изделия.
Нижняя граница продолжительности обработки выбрана из возможности проведения предварительной ВЧ-плазменной обработки и получения удовлетворительного по толщине и сцеплению покрытия.
Верхняя граница объясняется тем, что после 5 минут обработки не происходит существенного изменения качества покрытия, в частности требуемая коррозионная стойкость достигается.
Нижняя граница вкладываемой мощности выбирается из необходимости разложения МОС, а при мощностях больше W верхняя происходит перегрев поверхности изделия.
Обработка поверхности на предлагаемой ВЧ-плазменной установке включает следующие операции:
загрузка-закрепление обрабатываемого изделия в узле подачи изделия в струю плазмы;
вакуумирование-создание в вакуумной камере с обрабатываемыми изделиями низкого давления;
предварительная обработка-нагрев, очистка, полировкаповерхности, залечивание микротрещин струей аргоновой плазмы;
ВЧ-плазменная обработка с добавкой МОС- происходит разложение МОС в сгустке плазмы, транспортировка продуктов разложения струей плазмы на поверхность обрабатываемого изделия, модификация предварительно обработанной поверхности, т.е. изменение ее состава и структуры;
развакуумирование выключение вакуумных насосов, напуск воздуха, снятие обработанных изделий с узла подачи.
Таким образом, коррозионная стойкость изделия повышается благодаря двум совместным операциям: предварительной обработке в струе аргоновой плазмы и сразу же подачи с струей плазмы продуктов разложения МОС в разряде. Если произойдет задержка с подачей МОС, например, межоперационное время 5-10 мин, изделие успеет остыть, качество обработки не гарантируется.
Примеры конкретного исполнения приведены в таблице.
При плазменной обработке отражающих поверхностей стоматологических зеркал контролировали режим обработки: ток анода Ia, расход плазмообразующего газа Gарг, расход МОС Gмос, продолжительность воздействия плазменной смеси МОС с аргоном tобр, продолжительность предварительной обработки tпред..
В качестве МОС использовали оксиды алюминия и кремния.
Приведенная таблица показывает, что металлические зеркала из стали марки 12X18H10T с ВЧ-плазменной подготовкой и модификацией в реакционной смеси на ВЧ плазменной установке в режиме I 0,45А, Gарг. 0,08 г/с, tпред. 3 мин, Iобр. 0,5А, Gмос 0,1 г/с, tобр. 5 мин имеют необходимую коррозионную стойкость, устойчивость к средствам дезинфекции и стерилизации. Они не запотевают в ротовой полости. В зависимости от режимов обработки, от вида МОС предлагаемым способом можно наносить однородные покрытия толщиной до 2 мкм на проводящую и диэлектрическую подложку.
Нанесено покрытие на стекло с целью осветления (осветление линз очков, оптических приборов). В качестве эксперимента нанесено покрытие SiO2 с толщиной до 500 А на фторопласт-4, полипропилен.
Использованная литература
1. Получение пленок оксидов Bi,Sr, Ca методом МОС в плазме. Koinuma H, Symp. Proc. Yol.3(Bari), 1989, 1521-1526, Int Symp.Plasma, Chem, Pugnochiuso Sept 4-8, 1989.
2. Япония, заявка N 63-62881, МКИ4 C 23 C 16/50, 1988г.
3. А. С. N 1042359 Способ обработки поверхности деталей,11.04.84. И.Ш. Абдуллин, И.Г.Гафаров, А.В.Гузняк, Л.М.Сорокин, ДСП.
4. Заявка N 58-12349, Япония, C 23 F, 3/00, 1/00, 1/08, 1983.
5. Пат.N 4425210, США, C 23 F 1/00, 1984.
6. Пат.N 433814, США, C 23 F 1/02, 1983.
7. Заявка N 60-32713, Япония, C 23 C 16/50, H 01 L 21/318, 1986.
8. Авт.св. СССР N 596125(21) 2387226/18-25, 28.06.76, H 05 H 1/24, (53) 533.9.07, (72) Н.И.Гончар, А.В.Звягинцев, Р.В.Митин.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ ОБРАБОТКИ СИНТЕТИЧЕСКИХ АЛМАЗНЫХ ПОРОШКОВ | 1992 |
|
RU2048262C1 |
Способ нанесения покрытий на внутреннюю поверхность длинномерных изделий | 1987 |
|
SU1491037A1 |
СТОМАТОЛОГИЧЕСКОЕ ЗЕРКАЛО | 1992 |
|
RU2103904C1 |
СПОСОБ ПЛАЗМЕННОЙ ОБРАБОТКИ ДИСПЕРСНОГО МАТЕРИАЛА | 1991 |
|
SU1810025A1 |
СПОСОБ ОБРАБОТКИ НАТУРАЛЬНОЙ КОЖИ С ДЕФЕКТОМ ОТДУШИСТОСТИ | 2011 |
|
RU2460805C1 |
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ АЛЮМИНИЕВЫХ СПЛАВОВ | 1990 |
|
SU1823533A1 |
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО УЛЬТРАДИСПЕРСНОГО ПОРОШКА | 2012 |
|
RU2492027C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, ПРЕИМУЩЕСТВЕННО АРБОЛИТА | 2007 |
|
RU2345886C2 |
ВЫСОКОЧАСТОТНЫЙ ЕМКОСТНЫЙ ПЛАЗМОТРОН | 1993 |
|
RU2027324C1 |
СПОСОБ ПЛАЗМЕННОГО НАПЫЛЕНИЯ ПОКРЫТИЙ | 1992 |
|
RU2029792C1 |
Способ обработки поверхности изделия включает предварительную обработку поверхности неравновесной высокотемпературной плазмой в среде аргона с последующей добавкой в плазмообразующий газ металлоорганических соединений и подачей его непосредственно в сгусток плазмы. Для осуществления способа используется плазмотрон с разрядной камерой 8, имеющей боковые вводы 18, расположенные ниже системы электродов 7 и центральный ввод 16 с патрубком, срез которого расположен в области системы электродов 7. 2 с.п. ф-лы, 2 ил., 1 табл.
Заявка Японии N 6302881, кл | |||
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб | 1921 |
|
SU23A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Высокочастотный плазматрон | 1976 |
|
SU596125A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Авторы
Даты
1997-05-20—Публикация
1994-02-22—Подача