Изобретение относится к металлургии, в частности к рафинированию металла с применением вакуума с внепечной обработкой жидкого металла.
В настоящее время особо низкое содержание углерода в металле получают либо используя циркуляционную дегазацию (RH), либо вдувая в расплав частицы твердого окислителя. Однако в первом случае невелика скорость процесса, а во втором расплав перекисляется.
Известен способ вакуумной дегазации (см. патент US N 5167698 НКИ 75-405, 1992), включающий дегазацию металла путем поддержания внутри n-пористых цилиндрических элементов вакуума, погруженных в жидкий расплав металла, проницаемых для газа и не проницаемых для металла.
Недостаток этого способа низкая производительность и невысокая чистота получаемого металла.
Наиболее близким к заявленному является способ получения высокочистого металла, основанный на вакуумной отсасывающей дегазации, позволяющей обеспечить глубокое обезуглероживание металла [1]
Недостатком этого способа является невысокая чистота получаемого металла.
Известно устройство вакуумного напыления [2] содержащее вакуумную камеру, в которой размещен испаритель напыляемого вещества и приемная поверхность-подложка в виде пластины.
Недостатком этого устройства является невысокая производительность процесса.
Известно устройство для нанесения покрытий [3] содержащее испаритель и подложкодержатель в виде пластины и расположенную между ними сетку. Это устройство имеет невысокую производительность и большие энергозатраты на единицу получаемого продукта.
Наиболее близким по технической сущности и достигаемому результату является установка для получения вакуумплавленного металла (см. Чертеж Гос. института редких металлов [4] включающая вакуумную камеру с размещенным в ней тиглем, конденсатором, графитовым нагревателем с системой экранов из графита и плавильным узлом с кристаллизатором, в которой совмещен процесс вакуумной очистки и переплава дистиллята.
Однако эта установка имеет низкую производительность и высокие энергозатраты на единицу получаемого продукта.
Задачей изобретения является получение металла более высокой чистоты. Желательным техническим результатом является получение разной, заранее заданной структуры металла (спеченного порошка, слитка, кристаллических дендридов, монокристаллов); повышение производительности процесса; снижение энергетических затрат на единицу веса получаемого продукта, снижение потерь высокочистого металла в процессе его получения.
Полученный результат достигается тем, что известный способ включает загрузку металла в плавильный тигель, вакуумирование камеры, нагрев и расплавление металла с одновременной дегазацией, испарение металла, перенос металла на съемную панель-конденсатор за счет разности температур и давлений, причем расплавленный металл испаряется селективно за счет применения капиллярно-пористого фильтра, устанавливаемого над поверхностью металла и при расплавлении частично погружающегося в него, имеющий нагреватель для предотвращения закупорки пор в процессе испарения полученного металла. Капиллярно-пористый фильтр пропускает полученный металл и газы, задерживает окислы, шлаки и примеси, содержащиеся в расплаве металла. Испарившийся металл направляется концентрированным потоком от испарителя на панель-конденсатор. В качестве концентратора используется обечайка, соединенная с плавильным тиглем. Разницу температур устанавливают от температуры испарителя до температуры конденсатора. Требуемую температуру устанавливают на панели-конденсаторе либо подогревая его, либо захолаживая, в зависимости от структуры получаемого высокочистого металла. Разность давлений устанавливают дискретно от давления паров у поверхности испарителя до давления паров металла у панели-конденсатора в зависимости от структуры получаемого высокочистого металла при помощи подключения блоков вакуумных насосов. Форма панели-конденсатора выполнена с учетом аэродинамики потока испаряемого металла. На магнитовосприимчивые металлы воздействуют постоянным магнитом, что повышает эффективность процесса испарения.
Для реализации предложенного способа в известном устройстве получения чистого металла, содержащем вакуумную камеру, плавильный тигель, съемную панель-конденсатор, дополнительно устанавливается на поверхность металла в плавильном тигле капиллярно-пористый фильтр, повышающий производительность процесса, съемная панель-конденсатор выполнена в виде тонкостенного диска с выпуклой центральной частью и вогнутой средней частью по направлению к потоку осаждаемого металла. Панель-конденсатор может работать как в режиме нагрева (имеет нагреватель), так и в режиме охлаждения, для чего над ней расположена система охлаждения, состоящая из коаксиально расположенных контрольной и охранной камер, подсоединенных патрубками подвода хладагента и отвода паров. В контрольной камере расположен постоянный магнит для воздействия на магнитовосприимчивые металлы. Устройство снабжено обечайкой с расширяющейся верхней частью, жестко закрепленной на плавильном тигле, выполняющей роль концентратора потока металла к панели-конденсатору и сокращающей потери металла. Обечайка и панель-конденсатор образует щелевое сопло, что позволяет повысить эффективность процесса откачки.
Сущностью способа получения высокочистого металла, включающего загрузку металла в плавильный тигель, вакуумирование, нагрев металла в тигле с одновременной дегазацией металла в вакууме, перенос металла от испарителя к конденсатору за счет градиента температур, давлений и магнитного поля, осаждение металла на конденсаторе, является то, что металл испаряется селективно за счет применения капиллярно-пористого фильтра, устанавливаемого на поверхности металла. Капиллярно-пористый фильтр пропускает металл и растворенные в нем газы и задерживает окислы металла, шлаки, другие металлы, являющиеся примесями и содержащиеся в расплаве. Применение капиллярно-пористого фильтра позволяет повысить производительность процесса за счет эффекта "подсоса" металла при помощи капиллярных сил. Подбирая форму капиллярно-пористого фильтра, можно в несколько раз увеличить площадь испарения металла. Капиллярно-пористый фильтр может быть выполнен с развитой поверхностью испарения, с проникновением его конфигурации внутрь объема расплавленного металла вплоть до основания плавильного тигля, что позволяет уменьшить время дегазации из-за выхода газов изнутри объема расплава металла. За счет использования нагревателя, расположенного в капиллярно-пористом фильтре (предотвращающего закупорку фильтра в процессе испарения металла), также уменьшается время разогрева металла. Эффективность процесса испарения усиливается из-за отсутствия пленки окислов металла и шлаков на поверхности испарения, так как металл испаряется непосредственно из каналов капиллярно-пористого фильтра. Испарившийся металл концентрированным потоком направляется на панель-конденсатор. Для этого используют обечайку с расширяющейся верхней частью, жестко установленную на плавильном тигле, снижающую миграцию получаемого металла в радиальном направлении в откачиваемый объем контейнера. Разница температур по направлению к панели-конденсатору устанавливается от температуры испарения до температуры конденсации металла. Температуру панели-конденсатора можно регулировать в зависимости от структуры получаемого высокочистого металла при помощи нагревателя, установленного на ней, от 500 до 1700 К, либо охлаждая до температуры 40-300 К, заливая в систему охлаждения криогенные и иные охлаждающие жидкости. Так как W - Tисп.-Tконд. (W скорость испарения металла), то производительность процесса можно увеличить в 1,5-3 раза за счет охлаждения панели-конденсатора. В процессе массопереноса металла от испарителя к конденсатору наблюдается радиальное отклонение потока металла у пластины конденсатора по направлению к щелевому соплу с выносом в откачиваемый объем. В результате практических испытаний была экспериментально подобрана форма панели-конденсатора с выпуклой центральной частью и вогнутой средней, препятствующая утечке получаемого металла за счет "задержки" и осаждения металла в вогнутой части панели-конденсатора, особенно в начальной стадии процесса осаждения металла. По сравнению с панелью-конденсатором плоской формы на панели-конденсаторе выбранной формы слиток очищенного металла получали на 5-10% тяжелее при равной загрузке исходного металла в плавильный тигель. Также форму панели-конденсатора можно подбирать и иной конфигурации, обеспечив уменьшение выноса получаемого металла в откачиваемый объем исходя из аэродинамики процесса. За счет подключения дополнительных насосов можно дискретно менять давление от 1•10-4 до 1•10-7 торр, что позволяет интенсифицировать процесс испарения и варьировать структуру и чистоту получаемого металла. Обечайка с расширяющейся верхней частью образует с панелью-конденсатором дозвуковое щелевое сопло, что позволяет увеличить скорость потока газа при откачке и, следовательно, повысить эффективность процесса. Возможен выбор и других форм обечайки и сопл, направленный на усовершенствование процесса. В контрольной камере системы охлаждения расположен постоянный магнит, действующий на магнитовосприимчивые металлы и повышающий эффективность процесса извлечения, переноса и осаждения металла. При захолаживании магнита криогенными жидкостями величина напряженности магнитного поля возрастает, что также повышает производительность процесса. Возможны варианты установки магнита на днище контрольной камеры и использования электромагнита.
На фиг. 1 изображено устройство для получения высокочистого металла, на фиг. 2 варианты используемых капиллярно-пористых фильтров.
Устройство состоит из контейнера 1, постоянного магнита 2, панели-конденсатора 3, плавильного тигля 4, нагревателя 5, нагревателя капиллярно-пористого фильтра 6, патрубка отвода газа 7, циалитового фильтра 8, азотной ловушки диффузионного насоса 9, блока вакуумных насосов 10, отверстия для откачки газов 11, днища контейнера 12, капиллярно-пористого фильтра 13, нагревателя панели-конденсатора 14, обечайки с расширяющейся верхней частью 15, щелевого сопла 16, охранной камеры 17 и коаксиально расположенной с ней контрольной камеры 18, съемной верхней крышкой 19, токовводов 20, патрубков отводов из камер 21, трубок заправки хладагентов 22, ввода датчиков давления 23 и ввода датчиков приборов 24.
Работа устройства для получения высокочистых металлов заключается в следующем: вакуумирование контейнера 1, нагрев металла в плавильном тигле 4 с одновременным нагревом панели-конденсатора 3, разогрев капиллярно-пористого фильтра 13, разогрев металла в плавильном тигле 4 до температуры плавления, дегазация металла, на панели-конденсаторе 3 устанавливается рабочая температура (40-1600 К), осаждение металла на панели-конденсаторе 3 за счет градиента температуры, давления, магнитного поля (в случае получения магнитновосприимчивых металлов), после получения высокочистого металла на панели-конденсаторе 3 нагрев плавильного тигля 4 и капиллярно-пористого фильтра 13 прекращаются; в случае если использовался подогрев панели-конденсатора, он прекращается; если использовали захолаживание панели-конденсатора, то выжидается, когда выкипит охлаждающая жидкость; давление в камере повышается до атмосферного, извлекается полученный металл, заменяется пластина-конденсатор 3, тигель 4 загружается новой порцией металла. Процесс повторяется.
Функционирование устройства с реализацией предложенного способа можно привести на примерах получения высокочистого никеля с различной структурой.
Пример 1. В плавильный тигель загружали 5 кг никеля чистотой 99,9% Поверх металла устанавливали капиллярно-пористый фильтр из тугоплавкого металла с открытыми порами. Давление в контейнере понижали до 1•10-5 торр. Прогревали капиллярно-пористый фильтр с одновременным нагревом никеля в плавильном тигле до T=1480o C. Постоянный магнит находился в контрольной камере системы охлаждения. После достижения Tпл. в течение 0,3 ч проводилась дегазация расплава металла. При нагреве панели-конденсатора до T=1350oC получали кристаллы никеля.
Пример 2. При нагреве панели-конденсатора до T=1150oC получали никель чистотой 99,9999% в плотном слитке с различной плотностью; процесс получения слитка никеля длился 1,5 ч. Выход никеля составил 91% от загруженного в тигель.
Пример 3. При охлаждении панели-конденсатора путем залива в систему охлаждения жидкого азота (T панели-конденсатора устанавливается в пределах 150 K) получали никель в виде спеченного порошка. Время процесса составляло 60 мин. Выход высокочистого металла составлял 93% от загруженного в плавильный тигель.
По сравнению с прототипом устройства время процесса сократилось в 1,5-2 раза. (В прототипе аналогичное количество металла конденсируется в течение 2-2,5 ч. ) Дегазация металла происходит в течение 0,2 ч (в прототипе в течение 0,5 ч).
В прототипе устройства извлекается 60-65% металла от загруженного в плавильный тигель, в предложенной установке извлекается до 85-95% металла.
В прототипе устройства энергетические затраты на единицу веса полученного металла составляют 3000 Ккал/г, в предлагаемом устройстве энергозатраты составляют 2100 Ккал/г, что на 30% меньше.
Предложенный способ, реализованный в конкретном устройстве, позволяет получить более чистый металл по сравнению с прототипом устройства, добиться получения заранее заданной структуры металла, повысить производительность процесса, снизить энергетические затраты на единицу полученного продукта. Если в прототипе устройства чистота получаемого металла не превышает 99,99% основного металла, то в предлагаемом устройстве возможно получить металл чистотой 99,9999% на 20-50% (в зависимости от вида получаемого металла) снизить энергетические затраты на единицу получаемого продукта; повысить производительность процесса в 1,5-2 раза; снизить потери высокочистого металла (унос в систему откачки) в 3-5 раз. Также по предлагаемому способу, реализованному в устройстве, возможно получить высокочистый металл различной структуры (в прототипе получается металл только в плотном слитке).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ НИКЕЛЬ-РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ | 2014 |
|
RU2556176C1 |
СПОСОБ ПОЛУЧЕНИЯ СУПЕРСПЛАВОВ НА ОСНОВЕ НИКЕЛЯ, ЛЕГИРОВАННЫХ РЕДКОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ | 2014 |
|
RU2572117C1 |
СПОСОБ РАЗДЕЛЕНИЯ ЗОЛОТОСЕРЕБРЯНЫХ СПЛАВОВ ПУТЕМ ВАКУУМНОЙ ДИСТИЛЛЯЦИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2766489C2 |
СПОСОБ РАЗДЕЛЕНИЯ ЗОЛОТОСЕРЕБРЯНЫХ СПЛАВОВ ПУТЕМ ВАКУУМНОЙ ДИСТИЛЛЯЦИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2609581C2 |
Способ очистки магния от примесей | 2017 |
|
RU2669671C1 |
ПЛАВИЛЬНОЕ УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ КРЕМНИЯ ИЗ РАСПЛАВА | 2003 |
|
RU2241080C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИЕЙ ДЕТАЛИ С МОНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2157296C1 |
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОТВЕРДОГО МАТЕРИАЛА | 2015 |
|
RU2596563C1 |
Способ выплавки никеле-титановых сплавов | 2015 |
|
RU2690130C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО СКАНДИЯ ВЫСОКОЙ ЧИСТОТЫ | 1992 |
|
RU2034079C1 |
Использование: металлургия, в частности при рафинировании металла с применением вакуума во внепечной обработке жидкого металла. Сущность: осаждение высокочистого металла на панель-конденсатор осуществляется за счет создания разности температур и давлений между испарителем и конденсатором, воздействия постоянного магнитного поля на магнитовосприимчивые металлы, концентрации потока испаряемого металла и селективного отделения испаряемого металла. Устройство содержит контейнер, плавильный тигель, нагреватель, панель-конденсатор с формой, выполненной с учетом аэродинамики потока испаряемого металла, вакуумные насосы, обечайку, жестко соединенную с плавильным тиглем, с образованием щелевого сопла с панелью-конденсатором, имеющего нагреватель и систему охлаждения, состоящую их охранной и контрольной камер, кроме того, в контрольной камере размещен постоянный магнит для осаждения магнитно-восприимчивых металлов на панели-конденсаторе, а также капиллярно-пористый фильтр, расположенный над металлом в плавильном тигле. 2 с. и 2 з.п. ф-лы, 2 ил.
Авторы
Даты
1997-07-10—Публикация
1995-12-29—Подача