Изобретение относится к технологии изготовления изделий из стекла и может быть использовано в машиностроении при изготовлении стеклоформующего оборудования, работающего методом прессования.
Известен способ, описанный в [1] и принятый за прототип. Способ заключается в изготовлении как минимум одного формующего элемента (матрицы, пуансона или прессового кольца) полым. В полость корпуса формообразующего элемента помещают капиллярно-пористую структуру (КПС), затем частично заполняют ее теплоносителем, вакуумируют и производят герметизацию.
Стеклоформующее оборудование, изготовленное вышеуказанным способом, имеет недостаточные теплофизические характеристики, необходимые для получения качественных изделий из стекла. Этот недостаток связан с тем, что при рабочих температурах (≈600oC) формирования стекла происходит выделение неконденсирующихся газов из теплоносителя и конструкционных материалов. Что в свою очередь приводит к блокированию зоны конденсации неконденсирующимся газом, вскипанию теплоносителя, окислению КПС, увеличению неизотермичности рабочей поверхности и снижению теплопереноса от стекла к корпусу формующего элемента.
Перед авторами стояла задача создания способа, лишенного указанных недостатков. Поставленная задача решается тем, что при изготовлении стеклоформующего оборудования КПС помещают в полость корпуса формующего элемента, частично заполняют теплоносителем, вакуумируют и герметизируют вышеуказанную полость. При этом отличительной особенностью заявленного способа является то, что вакуумирование производят до остаточного давления газов не более 0,02 Па. При указанном давлении и нагреве корпуса формующего элемента до температуры выше температуры формования стекла производят дегазацию до получения натекания не более 1,8•10-8м3 Па/с. Далее корпус формующего элемента охлаждают до температуры, превышающей температуру плавления теплоносителя, заполняют теплоносителем, проводят операцию смачивания КПС и стенок полости теплоносителем, после чего удаляют остаточные неконденсирующиеся газы.
Вакуумирование может быть осуществлено при помощи безмасляного вакуумного агрегата, например турбомолекулярного насоса.
В качестве теплоносителя возможно использование щелочных металлов или их сплавов, которые перед заполнением полости очищают от примесей, например, методом дистилляции. В теплоноситель вводят поверхностно-активные вещества. Для натрия в качестве поверхностно-активного вещества может быть использован кислород при температуре не выше 35 ppm в натрии.
Масса загружаемого теплоносителя может быть определена из выражения:
εPжVc≅ m ≅ PжVc
где m масса теплоносителя, ε объемная пористость КПС, Pж - плотность жидкой фазы теплоносителя при температуре формирования стекла, Vс геометрический объем, занимаемый КПС в полости инструмента.
Теплоноситель загружают в полость в твердом, жидком или парообразном состоянии.
Операцию смачивания КПС и стенок полости корпуса формующего элемента производят путем нагрева корпуса формующего элемента до температуры, превышающей критическую температуру смачивания и выдержки при этой температуре не менее 1 ч.
Операцию смачивания полезно провести когда полость заполнена инертным газом под давлением от 0,05 до 0,15 МПа (абс.).
Осуществление дегазации при температуре выше рабочей, то есть выше температуры формования стекла, позволяет избавиться от неконденсирующихся газов, сужающих объем, занимаемый парами теплоносителя, и поверхность конденсации. Заполнение полости инертным газом и введение поверхностно-активных веществ в теплоноситель необходимы для того, чтобы существенно ускорить операцию смачивания. Вся совокупность отличительных признаков, позволяет достичь изотермичности поверхности формования, повысить производительность стеклоформующего оборудования и соответственно улучшить качество изделий из стекла. Таким образом, достигается указанный технический результат.
Материал корпуса формующего элемента должен удовлетворять следующим требованиям: стойкость к воздействию высоких (порядка 600oC), температур, коррозионная стойкость и вакуумная плотность. Таким условиям соответствуют хромо-никелевые аустенитные стали, например 1Х18Н10Т.
Пример.
Был изготовлен корпус пуансона в форме пустотелого цилиндра, в полость которого поместили стакан КПС, выполненный из двух слоев сетки N 450 по ТУ 14-4-432-73. Толщина КПС d 0,4 мм. Высота полости H 200 мм, внутренний диаметр полости d 20 мм. Подключили пуансон к газо-вакуумной системе, вакуумировали внутреннюю полость до остаточного давления газов 0,01 Па, нагрели, сохраняя данный вакуум до температуры 600oC и дегазировали в течение 4 ч при данной температуре до достижения величины натекания 5•10-9м3 Па/с. Далее корпус вместе с печью охлаждался до температуры 150oC, а потом полость частично заполнили калием, для которого плотность при температуре формования стекла 600oC равна p 697,8 кг/м3 [2] После заполнения полости калием провели операцию смачивания, заключающуюся в нагреве пуансона до 600oC и выдержки при этой температуре в течение 1 ч. В процессе этой операции происходит растворение пленок окислов на поверхности корпуса и КПС, контактирующих с теплоносителем, а также происходит удаление газовых пузырей, мешающих контакту теплоносителя с КПС и стенками корпуса. По окончании операции смачивания пуансон охлаждали вместе с печью до температуры 150oC и удаляли неконденсирующиеся газы, скопившиеся во внутренней полости, добившись остаточного давления газов 0,01 Па. Далее производилось отсоединение пуансона от газовакуумной системы и герметизация аргонно-дуговой сваркой. Объемная пористость КПС 0,8 (найдена экспериментальным путем по методике, описанной в [3]). Для расчета массы теплоносителя находим геометрический объем, занимаемый КПС в полости инструмента
Vс Vu + Vт,
где Vu объем цилиндрической части КПС,
Vт объем торцевой части КПС.
Максимальная масса теплоносителя:
mmax P(Vu + Vт) 3,53•10-3 кг 3,53 г
Минимальная масса теплоносителя
mmin= pε(Vu+Vт) = 2,82 г.
Таким образом, для вышеуказанных условий, масса загружаемого в пуансон теплоносителя должна находиться в пределах
2,82≅m≅3,53 г
Во внутреннюю полость было заправлено 3 г калия.
Использование изобретения позволяет интенсифицировать теплосъем (повысить производительность прессового оборудования), снизить перепад температуры по рабочей поверхности формующего инструмента, уменьшить толщину и повысить качество изделий из стекла.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПРИГОТОВЛЕНИЯ ПИЩИ | 1995 |
|
RU2081628C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ | 1999 |
|
RU2175102C2 |
РЕАКТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ ГАЗОФАЗНЫХ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ | 2007 |
|
RU2359748C2 |
РЕАКТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ ГАЗОФАЗНЫХ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ | 2008 |
|
RU2393010C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕКЛОИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2097342C1 |
Кассетно-формовочная установка | 1989 |
|
SU1719210A2 |
Двигатель с внешним подводом теплоты | 1987 |
|
SU1502870A1 |
Поршень для двигателя внутреннего сгорания | 1985 |
|
SU1622603A1 |
УСТРОЙСТВО ДЛЯ ФОРМОВАНИЯ ИЗДЕЛИЙ ИЗ СТЕКЛА | 1994 |
|
RU2087430C1 |
Способ изготовления тепловой трубы | 1984 |
|
SU1186926A1 |
Использование: изобретение относится к технологии изготовления стекла и может быть использовано в машиностроении при изготовлении стеклоформующего оборудования, работающего методом давления. Сущность изобретения: в способе изготовления стеклоформующего оборудования в полость корпуса формующего элемента (пуансона, матрицы или прессового кольца) помещают капиллярно-пористую структуру, частично заполняют полость теплоносителем, вакуумируют и герметизируют. Отличительной особенностью предлагаемого способа является то, что вакуумирование производят до остаточного давления не более 0,02 Па, осуществляют дегазацию при указанном давлении и нагреве корпуса формующего элемента выше температуры формования стекла до получения натекания не более 1,8•10-8 м3 Па/с. Далее корпус формующего элемента охлаждают до температуры, превышающей температуру плавления теплоносителя и затем заполняют теплоносителем, проводят операцию смачивания капиллярно-пористой структуры и стенок полости теплоносителем, затем удаляют остаточные неконденсирующиеся газы и герметизируют. Положительный эффект заключается в увеличении производительности стеклоформующего оборудования, уменьшении перепада температуры по рабочей поверхности формующего элемента и повышении качества выпускаемых изделий из стекла. 1 с. и 13 з.п. ф-лы.
εPжVc≅ m ≅ PжVc,
где m масса теплоносителя;
ε - объемная пористость капиллярно-пористой структуры;
Рж плотность жидкой фазы теплоносителя при температуре формования стекла,
Vc геометрический объем, занимаемый капиллярно-пористой структурой в полости инструмента.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
РСТ, заявка WO 93/16007, кл | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Кириллов П.Л | |||
и др | |||
Справочник по теплогидравлическим расчетам | |||
- М.:Энергоатомиздат, 1990, с | |||
Ножевой прибор к валичной кардочесальной машине | 1923 |
|
SU256A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Ивановский М.Н | |||
и др | |||
Технологические основы тепловых труб | |||
- М.: Атомиздат, 1980, с | |||
Нивелир для отсчетов без перемещения наблюдателя при нивелировании из средины | 1921 |
|
SU34A1 |
Авторы
Даты
1997-08-20—Публикация
1995-08-08—Подача