Изобретение относится к металлургии, преимущественно алюминиевым сплавам методом непрерывного литья.
Известно устройство для непрерывной разливки алюминия и его сплавов, содержащее кристаллизатор, рабочая поверхность которого имеет хромовое покрытие с толщиной слоя 5-30 мкм, и приспособление для распределения смазки [1]
Недостатком указанного устройства является то, что в процессе плавки за счет способности хрома растворяться в алюминии возрастает степень взаимодействия с расплавом. На рабочей поверхности кристаллизатора образуются "налипы", которые ведут к ухудшению качества поверхности слитка и увеличивают износ кристаллизатора.
Наиболее близким к предлагаемому является кристаллизатор для непрерывной разливки алюминия и его сплавов, содержащий корпус с приспособлением для распределения смазки, при этом корпус выполнен из алюминиевого сплава, а на его рабочей поверхности выполнено защитное покрытие, образующееся в результате пропитывания твердого пористого анодированного слоя насыщенным раствором соли тиомолибдата аммония [2]
Существенным недостатком указанного кристаллизатора является наличие твердого пористого слоя на рабочей поверхности кристаллизатора. Пористый слой способствует снижению теплоотвода от стенок кристаллизатора, что ведет к значительному повышению температуры рабочей поверхности, к взаимодействию покрытия с расплавом. В результате взаимодействия покрытия (анодного слоя оксида алюминия или пористого слоя чистого хрома) с алюминиевым расплавом снижается стойкость кристаллизатора и ухудшается качество поверхности слитка. Кроме того, повышается трение покрытия по стенке слитка за счет увеличения шероховатости покрытия из-за его пористости, что снижает качество поверхности металла.
Технический результат изобретения заключается в повышении стойкости кристаллизатора и качества слитков.
Технический результат достигается тем, что кристаллизатор для непрерывной разливки алюминия и его сплавов содержит корпус с приспособлением для распределения смазки, при этом корпус выполнен из алюминиевого сплава, а на его рабочей поверхности выполнено защитное покрытие, причем защитное покрытие выполнено многослойным с чередованием слоев титана и нитрида титана, при этом слой нитрида титана выполнен со стороны рабочей полости кристаллизатора с шероховатостью не более 0,63 мкм.
Сопоставительный анализ с ближайшим аналогом позволил выявить в предлагаемом техническом решении следующие отличительные признаки: выполнение защитного покрытия многослойным с чередованием слоев титана и нитрида титана; выполнение слоя нитрида титана со стороны рабочей полости кристаллизатора с шероховатостью не более 0,63 мкм;
На основании вышеизложенного можно сделать вывод, что заявляемое техническое решение соответствует критерию охраноспособности "новизна".
Выполнение защитного покрытия многослойным с чередованием слоев титана и нитрида титана объясняется необходимостью исключения больших перепадов значений коэффициентов линейного расширения (α) между материалом кристаллизатора и покрытия. Таким образом, на рабочую поверхность кристаллизатора из алюминиевого сплава a 2,35 • 106 град.-1) наносят подложку из титана (a 11,4 • 10-6 град.-1) под слой нитрида титана a 6,6 • 10-6 град.-1), что обеспечивает плавный переход от одного материала к другому. При этом чередование слоев титана и нитрида титана позволяет добиться более прочного взаимного соединения слоев покрытия из-за их химического сродства и при необходимости увеличить общую толщину покрытия.
Кроме того, нитрид титана нерастворим в жидком алюминии, поэтому его нанесение на контактирующую с расплавом поверхность гарантирует высокую стойкость покрытия и исключает его отслаивание, а высокая твердость нитрида титана (2000 HV) способствует повышению прочности рабочей поверхности (для сравнения твердость титана 600 HV, а хрома 900 HV).
Выполнение слоя нитрида титана со стороны рабочей полости кристаллизатора объясняется тем, что он обладает высокими антифрикционными свойствами, которые обеспечивают хорошее скольжение слитка на поверхности кристаллизатора. Однако шероховатость защитного покрытия при этом должна быть не более 0,63 мкм.
При шероховатости более 0,63 мкм возрастает трение и ухудшается поверхность слитка. Если шероховатость будет существенно меньше, чем 0,63 мкм, то эффективность работы кристаллизатора возрастает, но при этом возрастают и затраты на полировку рабочей поверхности. Таким образом, качество полировки кристаллизатора определяет качество поверхности слитка.
При дополнительном анализе известных источников информации был выявлен прием нанесения пленки на основе нитрида титана толщиной 0,005-0,007 мкм для повышения стойкости штампа (а.с. СССР N 778873, кл. B 21 D 37/00, 1980). Известен кристаллизатор, рабочая поверхность которого снабжена слоем металлопокрытия (заявка Японии N 4-22658, кл. B 22 D 11/04, 1992), которое предназначено для улучшения совместимости частей при многократной сборке и разборке.
Других признаков, отличающих заявляемое техническое решение от прототипа, не обнаружено, поэтому можно сделать вывод, что заявляемый кристаллизатор соответствует критерию "изобретательский уровень".
Таким образом, все признаки предлагаемого изобретения способствуют достижению технического результата, а именно: повышению стойкости кристаллизатора и качества слитков путем регламентации размещения слоев защитного покрытия, позволяющего исключить большой перепад коэффициентов линейного расширения между материалом кристаллизатора и обеспечить повышение твердости защитного покрытия.
На чертеже представлен вертикальный разрез кристаллизатора.
Предлагаемый кристаллизатор содержит корпус 1, выполненный из алюминиевого сплава, внутренняя поверхность которого снабжена защитным покрытием, содержащим слой титана 2 и нитрида титана 3. Позицией 4 обозначен расплав, а позицией 5 слиток, установленный на поддоне 6. В корпусе выполнено приспособление для распределения смазки 7, полость для охлаждающей жидкости 8.
Кристаллизатор работает следующим образом. Корпус кристаллизатора 1 с нанесенным на его внутреннюю поверхность защитным покрытием 2 и 3 устанавливают на рабочем столе литейной машины. В процессе контакта расплава 4 с поверхностью антифрикционного покрытия формируется слиток 5, который скользит по его поверхности, опираясь на поддон 5, и вытягивается из кристаллизатора. Охлаждение слитка производят жидкостью, заполняющей полость 8 кристаллизатора, а смазку осуществляют посредством приспособления 7. Для определения пределов допустимой шероховатости покрытия была проведена серия экспериментов на кристаллизаторе диаметром 240 мм из алюминиевого сплава Д1. Внутренняя поверхность кристаллизатора подвергалась полировке до разных уровней шероховатости по ГОСТ 2789-73, а затем ионно-плазменным методом наносился слой чистого титана толщиной 1-3 мкм, а поверх него слой нитрида титана толщиной 3-5 мкм. При этом шероховатость наружного слоя была не более 0,63 мкм.
Кристаллизатор испытывался при непрерывном литье слитков из алюминиевого сплава АД31 с подачей стандартной смазки.
В процессе литья оценивались стойкость кристаллизатора и качество поверхности слитков по сравнению с кристаллизатором-прототипом и без защитного покрытия. Результаты экспериментов представлены в таблице.
Как следует из данных таблицы, при всех вариантах покрытия при шероховатости поверхности более 0,63 мкм слитки имеют дефекты. Стойкость кристаллизатора с покрытием "титан + нитрид титана" выше, чем у ближайшего аналога. Это означает, что каждый кристаллизатор с покрытием "титан + нитрид титана" дает больше качественных слитков, чем с покрытием по а.с. N 544502. Таким образом, преимущество предлагаемого кристаллизатора в сравнении с прототипом свидетельствует о его высокой эффективности.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРОЧНЕНИЯ РАБОЧИХ ПЛИТ КРИСТАЛЛИЗАТОРОВ УСТАНОВКИ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ | 1995 |
|
RU2094167C1 |
КРИСТАЛЛИЗАТОР | 2007 |
|
RU2374032C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА, СОДЕРЖАЩЕГО ЛИТИЙ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2079563C1 |
СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЯ И СПЛАВОВ НА ЕГО ОСНОВЕ | 1997 |
|
RU2112065C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХТВЕРДОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ КУБИЧЕСКОГО НИТРИДА БОРА ДЛЯ РЕЖУЩИХ ИНСТРУМЕНТОВ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 1999 |
|
RU2147972C1 |
КРИСТАЛЛИЗАТОР ДЛЯ СЛЯБОВОЙ УСТАНОВКИ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ | 1995 |
|
RU2085327C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ДИСКОВЫХ ПИЛ С ПОМОЩЬЮ ЛАЗЕРА | 1995 |
|
RU2106948C1 |
СПОСОБ ОБРАБОТКИ ДЕТАЛЕЙ | 1995 |
|
RU2094486C1 |
ШЛАКООБРАЗУЮЩАЯ СМЕСЬ ДЛЯ ЗАЩИТЫ МЕТАЛЛА В КРИСТАЛЛИЗАТОРЕ | 1992 |
|
RU2025197C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ РАБОЧИХ СТЕНОК КРИСТАЛЛИЗАТОРА | 2001 |
|
RU2186654C1 |
Использование: металлургия, конкретнее, непрерывная разливка алюминия и его сплавов. Для повышения стойкости кристаллизации и качества слитков корпус кристаллизатора выполняют из алюминиевого сплава с защитным покрытием в виде чередующихся слоев титана и нитрида титана, нанесенным на его рабочую поверхность. В процессе контакта расплава с поверхностью покрытия формируется слиток. Перед нанесением покрытия рабочую поверхность кристаллизатора подвергают полировке, часто позволит получить шероховатость покрытия не более 0,63 мкм. 1 табл., 1 ил.
Кристаллизатор для непрерывной разливки алюминия и его сплавов, содержащий корпус с приспособлением для распределения смазки, при этом корпус выполнен из алюминиевого сплава, а на его рабочей поверхности выполнено защитное покрытие, отличающийся тем, что защитное покрытие выполнено многослойным с чередованием слоев титана и нитрида титана, при этом слой нитрида титана выполнен со стороны рабочей полости кристаллизатора с шероховатостью не более 0,63 мкм.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
МАЛОШУМЯЩИЙ КВАРЦЕВЫЙ ГЕНЕРАТОР С АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКОЙ УСИЛЕНИЯ | 2012 |
|
RU2498498C1 |
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ смазки кристаллизатора | 1975 |
|
SU544502A1 |
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
Авторы
Даты
1997-09-10—Публикация
1994-12-23—Подача