Изобретение относится к измерительной технике и может быть использовано в приборостроении и точном машиностроении для контроля формы объектов оптическим методом.
Целью изобретения является изыскание способа, позволяющего упростить средства контроля формы объектов и расширить их функциональные возможности.
Известен способ измерения формы объекта, при котором объект освещают набором лучей, отраженные от объекта лучи принимают в контрольных точках промежуточного тела, расположенных эквидистантно образцовой поверхности, отклонение формы контролируемого объекта определяют по изменению сигналов от отраженных световых лучей по сравнению с образцовыми сигналами (прототип). Способ основан на многоточечном принципе измерения, при котором информация о форме объекта сначала дискретно собирается в контрольных точках, а затем контролируется для участков между контрольными точками. Таким образом, одним из основных недостатков известного способа является отсутствие достоверной измерительной информации о форме объекта между контрольными точками. В устройстве, реализующем этот способ, поверхность промежуточного тела, эквидистантная образцовой поверхности, не служит непосредственно измерительным элементом, а лишь обеспечивает эквидистантность (т.е. равноудаленность) торцев приемных световодов от поверхности тела. Этот недостаток не позволяет в ряде случаев эффективно использовать устройства, реализующие известный способ, например, для контроля формы глубоких отверстий диаметром до 1 мм, микросопел и т.п.
Другим недостатком известного способа является то, что его реализация требует значительного количества аппаратуры: N+1 источников излучения, передающих и приемных световодов, фотоприемников, N цепей, каждая из которых содержит усилитель, первый и второй элементы памяти, дифференциальный усилитель и др. (где N количество контрольных точек).
Основной задачей, на решение которой направлено заявляемое изобретение, является устранение указанных недостатков и расширение функциональных возможностей средств контроля формы объектов.
Сущность способа заключается в контроле формы объекта по нескольким заданным направлениям с использованием для контроля по каждому направлению излучения только с выбранной для этого направления оптической частотой. При этом передающий и приемный световоды соединяют посредством оптически прозрачного тела, поверхность которого подобна поверхности контролируемого объекта и обратна ей. Таким образом создается "пространственный оптический калибр", позволяющий получать информацию по нескольким направлениям. Предлагаемый способ позволяет осуществлять переход от контроля формы объекта по одному направлению к контролю формы по другому направлению путем изменения только оптической частоты излучения в сочетании с использованием спектральных светофильтров, избирательно пропускающих излучение с определенной частотой.
На чертеже показана функциональная схема осуществления оптоэлектронного способа контроля формы объекта. Для контроля формы объекта по какому-либо одному направлению, например направлению B, от источника 1 подают излучение с требуемой оптической частотой νВ по световоду 2 в оптически прозрачное тело 3, на поверхность которого нанесены спектральные светофильтры 4, 5 и 6. Светофильтры избирательно пропускают только излучение с оптическими частотами νА,νВ и νC, соответствующими направлениям A, B и C.
Далее излучение попадает на объект вдоль направления B через спектральный светофильтр 5, избирательно пропускающий излучение с оптической частотой νВ и не пропускающий излучение с частотами νA и νC. Излучение с оптической частотой νВ не проходит через светофильтры 4 и 6, установленные по направлениям A и C. Таким образом, контролируемая поверхность 7 освещается только излучением с оптической частотой νВ по направлению B.
Отраженное от объекта излучение по направлению B собирают в оптически прозрачное тело 3 через этот же светофильтр 5. При этом рассеянное отраженное излучение с оптической частотой νВ не пройдет внутрь оптически прозрачного тела 3 по направлениям A и C, так как установленные по этим направлениям спектральные светофильтры 4 и 6 не пропустят излучение с оптической частотой νВ. Отраженное излучение далее по приемному световоду 8 подают на фотоприемник 9.
Преобразование отраженного от объекта излучения в амплитудный или фазовый информативный электрический сигнал осуществляют гомодинным или гетеродинным методами. При этом значения используемых оптических частот не согласуют с диапазоном спектральной чувствительности фотоприемника 9, т.е. используемые оптические частоты должны лежать внутри этого диапазона. Это позволит использовать один единый фотоприемник для детектирования на всех оптических частотах, используемых при контроле формы объекта.
При использовании оптического гетеродинирования для измерения параметров отраженного от объекта излучения изменяют оптическую частоту опорного излучения одновременно с изменением оптической частоты излучения, несущего измерительную информацию, так, чтобы разностная частота на выходе гетеродинного фотоприемника сохранялась постоянной при контроле формы объекта на всех используемых оптических частотах. Для этого формируют дополнительный оптический канал 10, предназначенный для формирования и передачи на гетеродинный фотоприемник опорного излучения, для чего от источника подают излучение с оптической частотой νВ (минуя измерительный оптический канал, образованный передающим световодом 2, оптически прозрачным телом 3 и приемным световодом 8), осуществляют сдвиг оптической частоты излучения на фиксированную величину Δν и подают опорное излучение с оптической частотой nВ+Δν на смесительную пластину 11 гетеродинного фотоприемника, где происходит интерференция с излучением, имеющим оптическую частоту νВ и несущим измерительную информацию. Это позволяет использовать электрический полосовой фильтр, усилитель и дальнейшую схему обработки измерительной информации, настроенные на одно значение разностной частоты. Таким образом, контроль формы объекта производится на всех оптических частотах без перенастройки гетеродинного фотоприемника.
Преимуществом предлагаемого способа по сравнению с прототипом является полное использование поверхности оптически прозрачного тела, посредством которого соединяют передающий и приемный световоды, благодаря применению спектральных светофильтров по каждому направлению. Поверхность оптически прозрачного тела, подобная поверхности контролируемого объекта и обратная ей, является непосредственно измерительным элементом системы источником измерительной информации. Помимо этого, в некоторых случаях предлагаемый способ позволяет вести контроль формы объекта как при эквидистантном расположении поверхности оптически прозрачного тела относительно поверхности контролируемого объекта, так и при неэквидистантном ее расположении. Это является важным преимуществом, поскольку в ряде случаев оказывается технически трудно обеспечить эквидистантность расположения промежуточного тела относительно контролируемой поверхности, например, при контроле формы глубоких отверстий диаметром до 1 мм, пазов, микросопел. Эти особенности позволяют расширить функциональные возможности средств контроля формы объекта.
Предлагаемый способ позволяет осуществить переход от контроля формы объекта по одному направлению к контролю формы объекта по другому направлению путем измерения только оптической частоты излучения в сочетании с использованием спектральных светофильтров. Это ведет к упрощению всего средства контроля объекта в целом. Так, использование N различных оптических частот вместо N оптических схем (по прототипу), каждая из которых состоит из источника излучения, передающего и приемного световодов, фотоприемника, усилителя и т.д. ведет к значительному аппаратурному упрощению средств контроля формы объекта, т.к. необходим только один источник излучения (с изменяемой оптической частотой) и один, единый для всех используемых оптических частот, фотоприемник.
Средства контроля, основанные на предлагаемом способе, могут быть реализованы с использованием современных оптических и электронных устройств, материалов и технологий. Например, соединение передающего и приемного световодов с образованием оптически прозрачного тела может быть осуществлено путем лазерной сварки, горячей формовки в подогреваемой оправке и т.д.
название | год | авторы | номер документа |
---|---|---|---|
ОПТОЭЛЕКТРОННЫЙ СПОСОБ КОНТРОЛЯ ФОРМЫ ОБЪЕКТА | 1995 |
|
RU2098752C1 |
СПОСОБ КОНТРОЛЯ ОПТИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ С ОБЪЕКТОМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2000 |
|
RU2188389C2 |
ОПТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ И ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2001 |
|
RU2223462C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ ПАРАМЕТРОВ ГРАНИЦЫ ОБЪЕКТА | 2000 |
|
RU2172470C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОТКЛОНЕНИЙ ОТ ПРЯМОЛИНЕЙНОСТИ | 2000 |
|
RU2175753C1 |
БЕСКОНТАКТНЫЙ ДАТЧИК ПЕРЕМЕЩЕНИЙ | 1999 |
|
RU2156435C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ДЕТАЛЕЙ | 1999 |
|
RU2158416C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ГРАНИЦЫ ОБЪЕКТА | 1999 |
|
RU2157964C1 |
Устройство с многолучевым спектральным фильтром для обнаружения метана в атмосфере | 2016 |
|
RU2629886C1 |
ЦИФРОВОЙ ИНФРАКРАСНЫЙ ИЗМЕРИТЕЛЬ ВЛАЖНОСТИ | 1996 |
|
RU2102730C1 |
Использование: в приборостроении и точном машиностроении для контроля формы объекта оптическим методом. Сущность изобретения: освещают объект и передают отраженное от объекта излучение через, соответственно, передающий и приемный световоды, торцы которых соединены между собой посредством оптически прозрачного тела, поверхность которого подобна поверхности контролируемого объекта и обратна ей, а для освещения объекта по выбранным направлениям размещают по каждому из этих направлений спектральные светофильтры, спектральные диапазоны пропускания которых отличаются друг от друга. Контроль формы объекта осуществляют, используя излучение, оптическая частота которого соответствует пропусканию соответствующего спектрального светофильтра. При этом спектральные светофильтры могут быть размещены на поверхности оптически прозрачного тела. 3 з.п. ф-лы, 1 ил.
SU, авторское свидетельство, 11665231, кл.G 01B 21/20, 1988. |
Авторы
Даты
1997-11-27—Публикация
1994-06-14—Подача