Изобретение относится к прикладной магнитооптике, в частности, к устройствам на основе магнитооптического эффекта Фарадея и промышленно применимо в магнитооптических устройствах типа дефектоскопов, головок для считывания информации с магнитного носителя, пространственно-временных сменных модуляторов света, переключателей, дефлекторов и других магнитооптических устройствах, в которых используются механизмы движения намагниченности.
Известен магнитооптический элемент на основе феррит-граната состава Gd0,2Y2,8Fe5O12 /1/. Недостатком этого элемента является низкое быстродействие, поскольку в указанном материале не реализуются быстродействующие механизмы движения намагниченности.
Наиболее близким техническим решением к заявляемому является известный магнитооптических элемент, содержащий по крайней мере один слой из магнитооптического материала со структурой граната, в состав которого входит по крайней мере один быстрорелаксирующий редкоземельный элемент R и железо /2/. Недостатком прототипа, содержащего феррит-гранат состава (Tm, Bi)3(Fe, Ga)5O12, является низкое быстродействие из-за невысокой скорости доменных стенок, составляющей 0,72 м/с.
Целью изобретения является повышение быстродействия магнитооптического элемента.
Поставленная цель достигается тем, что известный магнитооптический элемент, содержащий по крайней мере один слой из магнитооптического материала со структурой граната, в состав которого входит по крайней мере один быстрорелаксирующий редкоземельный элемент R и железо, соответствует химической формуле RxAyFeuMvO12, где A по крайней мере один немагнитный и/или медленнорелаксирующий магнитный ион, M - немагнитный ион, x ≅3, y ≅ 3, u ≅5, v ≅3, причем щи температуре T, в K, удовлетворяющей условию 0 ≅T ≅TN, где TN температура Нееля магнитооптического материала, выполняется соотношение |Mм+ Mб|/|Mм|>>1, где MM суммарный магнитный момент всех медленнорелаксирующих магнитных ионов, Ma суммарный магнитный момент всех быстрорелаксирующих магнитных ионов.
В частности, магнитооптический элемент может дополнительно содержать подложку, на которую нанесен слой из магнитооптического материала со структурой граната, при этом подложка может быть прозрачной и/или монокристаллической. Монокристаллическая подложка может быть выполнена со структурой граната, из фианита или сапфира. Например, подложка может быть выполнена из гадолиний-галлиевого, самарий-галлиевого, неодим-галлиевого, кальций-ниобий-галлиевого, гадолиний-кальций-магний-цирконий-галлиевого, гадолиний-скандий-галлиевого гранатов, при этом она может иметь ориентацию /111/, /110/, /210/ или /211/, а слой из магнитооптического материала может быть выполнен в виде эпитаксиальной пленки.
Подложка также может быть выполнена из стекла или полиметилметакрилата, а слой из магнитооптического материала может быть выполнен в виде поликристаллической или аморфной пленки.
В частности, слой из магнитооптического материала может быть выполнен в виде висмут-содержащего феррит-граната.
В частности, слой из магнитооптического материала может быть выполнен из феррит-граната состава RxLnyFeuMvO12, где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr, Ln Lu, V, La и/или Bi, M Ga, Al, Sc и/или In, при этом феррит-гранат может быть выполнен состава RxBiyFeuMvO12.
В частности, слой из магнитооптического материала может быть выполнен из феррит-граната состава RxLny-zCazFeuMv-zMezO12, где R Tm, Yb Er, Ho, Dy, Tb, Eu, Nd и/или Pr, Ln Lu, Y, La и/или Bi, M Ga, Al, Sc и/или In, Me Ge и/или Si, z ≅1,5.
В частности, слой из магнитооптического материала может быть выполнен из феррит-граната состава RxLny-zCazFeu-zMezO12, где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr, Ln Lu, Y, Bi и/или La, Me Ge и/или Si, z ≅1,5.
В частности, слой из магнитооптического материала может быть выполнен иэ гадолиний-содержащего феррит-граната.
В частности, гадолинийсодержащий феррит-гранат может быть выполнен состава RxLny-p-zGdpCazFeuMv-z MezO12, RxLny-pGdpFeuMvO12 или RxLny-z-pGdpCazFeu-zMezO12, где R Tm, Yb, Er,Ho, Dy, Tb, Eu, Nd и/или Pr, Ln Lu, Y, La и/или Bi, M Ga, Al, Sc и/или In, Me Ge и/или Si, z ≅ 1,5, p ≅2,8.
В частности, слой из магнитооптического материала может быть выполнен из ванадий-содержащего феррит-граната.
В частности, ванадийсодержащий феррит-гранат может быть выполнен состава RxLny-2qCa2qFeu-qVqMvO12, RxLny-2q-rCa2q+rFeu-q-rVq MerO12 или RxLny-z-2qGdzCa2qFeu-qVq MvO12, где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr, Ln Lu, Y, La и/или Bi, M Ga, Al, Sc и/или In, Me Ge и/или Si, q ≅0,7, r ≅0,7, z ≅1,5.
В частности, магнитооптический элемент может содержать, по крайней мере, два последовательно нанесенных слоя из магнитооптического материала, причем соотношение |Mм+ Mб|/|Mм|>>1 выполняется в соседних слоях при разных температурах, различающихся на величину ΔT, при этом величина ΔT может удовлетворять соотношению |ΔT| /TN<1.
Суть изобретения состоит в следующем. В феррит-гранате, соответствующем химической формуле RxAyFeuMvO12 и содержащем, по крайней мере, один быстрорелаксирующий редкоземельный элемент R, при температуре T, при которой выполняется соотношение 2Mм+ Mб|/|Mм|>>1 то есть в состоянии, близком к компенсации момента импульса, резко возрастает эффективное значение гиромагнитного отношения и как следствие предельная скорость доменных стенок и скорость вращения намагниченности, которые пропорциональны гиромагнитному отношению. Это обеспечивает повышение быстродействия магнитооптического элемента.
К числу быстрорелаксирующих, в частности, относятся следующие магнитные ионы: Tm3+, Yb3+, Er3+, Ho3+, Dy3+, Tb3+, Eu3+, Pr3+, Nd3+, Fe2+ и Fe4+. К числу медленнорелаксирующих магнитных ионов относятся Fe3+ и Gd3+.
Дополнительно быстродействие можно повысить, если в магнитооптическом элементе наводится орторомбическая анизотропия, то может иметь место, если феррит-гранат содержит европий, одновременно иттрий и висмут или гадолиний и висмут.
На подложках со структурой граната, из фианита, сапфира, стекла и полиметилметакрилата магнитооптический материал можно наносить в виде поликристаллических или аморфных пленок с помощью распыления или методом пиролиза. В случае подложек из немагнитных гранатов магнитооптический материал можно получать в виде эпитаксиальных пленок методом жидкофазной эпитаксии. В этих монокристаллических пленках наводится достаточно сильная одноосная магнитная анизотропия, если в их состав входят два редкоземельных элементах с разным ионным радиусом либо висмут и редкоземельный элемент, при этом вектор намагниченности в пленке ориентируется перпендикулярно ее плоскости; если одноосная магнитная анизотропия мала либо наводится анизотропия типа "легкая плоскость" вектора намагниченности ориентируются в плоскости пленки. Наибольшая одноосная анизотропия наводится при ориентации подложки /111/, а при ориентации /110/, /210/ и /211/ может наводиться орторомбическая анизотропия.
Для обеспечения компенсации момента импульса ионы железа в структуре граната замещают немагнитными ионами в тетраэдрической подрешетке. Наибольший уровень замещения требуется при использовании для этой цели ионов алюминия, затем галлия, поскольку часть этих ионов входит в октаэдрическую подрешетку. Меньший уровень замещения железа требуется при использовании четырехвалентных ионов германия и кремния, а также пятивалентных ионов ванадия, однако в этих случаях в додекаэдрическую подрешетку необходимо для зарядовой компенсации вводить ионы кальция, причем в случае ванадия их требуется вдвое больше.
Уменьшить уровень замещения железа, необходимый для обеспечения компенсации момента импульса, можно, если в додекаэдрическую подрешетку вводить медленнорелаксирующие магнитные ионы гадолиния.
Выбор конкретного быстрорелаксирующего магнитного иона, немагнитного иона, входящего в ту или иную подрешетку граната, определяется не только условием обеспечения зарядовой компенсации, но и необходимостью согласования параметров решеток пленки и подложки при использовании жидкофазной эпитаксии, заданными значениями параметров феррит-граната: магнитной анизотропии, намагниченности насыщения, размера доменов, параметра затухания, значений температур компенсации магнитного момента и момента импульса, температуры Нееля и др. В частности, где использовании в магнитооптическом элементе управляющих токовых структур из высокотемпературного сверхпроводника необходима, чтобы температура компенсации момента импульса равнялась рабочей температуре, т.е. ниже температуры перехода в сверхпроводящее состояние.
Одновременное обеспечение в магнитооптическом материале компенсации момента импульса и орторомбической магнитной анизотропии повышает термостабильность динамических свойств феррит-граната. Дополнительно термостабильность можно повысить, используя композиционно-модулированный магнитооптический материал, где чередуются слои с разной температурой компенсации момента импульса, причем эти температуры должны быть достаточно близки.
Пример 1. На стеклянные подложки методом пиролиза наносили поликристаллические пленки состава Ho1Bi2Fe3,6Ga1,4O12. Время перемагничивания этих пленок не превышало 5 нс, а температура Нееля составляла 130oC.
Пример 2. На подложках из гадолиний-галлиевого граната с ориентацией /III/ методом жидкофазной эпитаксии выращивали пленки состава Gd1,0Tm0,5Ho0,7Bi0,8Fe4,2 Ga0,8-kAlkO12. Скорость движения в этих магнитоодноосных пленках достигала 1200 м/с, а температура Нееля 168oC.
Пример 3. На подложках из гадолиний-кальций-магний-цирконий-галлиевого граната с ориентацией /110/ методом жидкофазной эпитаксии выращивали пленки состава Eu1Gd1Bi1Fe4,3Ga0,7O12, в которых скорость доменных стенок, достигающая 1400 м/с, в диапазоне температур шириной 100oC изменялась не более чем на 20% а температура Нееля превышала 200oC.
Пример 4. На подложках из гадолиний-галлиевого граната с ориентацией /111/ методом жидкофазной эпитаксии последовательно наносили слои феррит-граната, чередуя условия синтеза. В полученных композиционно-модулированных пленках скорость доменных стенок превышала 1000 м/с в диапазоне температур шириной 90oC, тогда как в однородных пленках состава Bi1,5Tm1,5Fe3,5Ga1,5, выращенных из того же раствора расплава этот температурный диапазон составлял 27oC.
Пример 5. На подложках из неодим-галлиевого граната с ориентацией /III/ методом жидкофазной эпитаксии выращивали пленки состава Gd0,8Lu0,5Eu1,0Ca0,7Fe4,1 Ga0,55 V0,35O12. Температура Нееля составила 190oC, а скорость доменных стенок в точке компенсации момента импульса 1600 м/с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВИЗУАЛИЗАЦИИ ДЕФЕКТОВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И ПРЕОБРАЗОВАТЕЛЬ МАГНИТНОГО ПОЛЯ | 1994 |
|
RU2092832C1 |
МАГНИТООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, СПОСОБ ВЫРАЩИВАНИЯ ПЛЕНКИ, СПОСОБ ВИЗУАЛИЗАЦИИ НЕОДНОРОДНОГО МАГНИТНОГО ПОЛЯ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2168193C2 |
Доменсодержащий магнитооптический монокристалл со структурой граната | 1988 |
|
SU1836502A3 |
МАГНИТОФОТОННЫЙ КРИСТАЛЛ | 2014 |
|
RU2541443C1 |
СЦИНТИЛЛЯЦИОННОЕ ВЕЩЕСТВО (ВАРИАНТЫ) И СЦИНТИЛЛЯЦИОННЫЙ ВОЛНОВОДНЫЙ ЭЛЕМЕНТ | 1998 |
|
RU2157552C2 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1990 |
|
RU2017293C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК КИСЛОРОДА | 2013 |
|
RU2546849C2 |
ФТОРЗАМЕЩЕННЫЕ БЕНЗОАТЫ ЛАНТАНИДОВ, ПРОЯВЛЯЮЩИЕ ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА В ВИДИМОМ И ИК ДИАПАЗОНЕ | 2015 |
|
RU2605746C1 |
ПРЕОБРАЗОВАТЕЛЬ ВЫСОКОЭНЕРГЕТИЧЕСКИХ ЧАСТИЦ И СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ | 2005 |
|
RU2302015C2 |
СПОСОБ ФОРМИРОВАНИЯ МАГНИТНОГО МАТЕРИАЛА ДЛЯ ЗАПИСИ ИНФОРМАЦИИ С ВЫСОКОЙ ПЛОТНОСТЬЮ | 2001 |
|
RU2227941C2 |
Использование: изобретение относится к прикладной магнитооптике, в частности к устройствам на основе магнитооптического эффекта Фарадея, и промышленно применимо в магнитооптических устройствах типа дефектоскопов, считывающих головок, пространственно-временных модуляторов света, переключателей, дефлекторов и других магнитооптических устройствах, в которых используется механизм движения намагниченности. Сущность: магнитооптический элемент выполнен из феррит-граната и содержит по крайней мере один быстрорелаксирующий редкоземельный ион и соответствует химической формуле RxAyFeuMvO12. Здесь A - немагнитный и/или медленнорелаксирующий магнитный ион, M - немагнитный ион, замещения таковы, что x ≅3, y ≅3, u ≅5, v ≅3. В диапазоне температур, где имеет место магнитное упорядочение, феррит-гранат имеет точку компенсации момента импульса, вблизи которой выполняется соотношение |Mм+ Mб|/|Mм|>>1,где Mм - суммарный магнитный момент всех медленнорелаксирующих магнитных ионов, Mб - суммарный магнитный момент всех быстрорелаксирующих магнитных ионов. 36 з.п. ф-лы.
RxAyFeuMvO1 2,
где A по крайней мере один немагнитный и/или медленнорелаксирующий магнитный ион;
М немагнитный ион;
x ≅ 3;
y ≅ 3;
u ≅ 5;
v ≅ 3,
причем при температуре Т К, удовлетворяющей условию
0 < Т < ТN,
где TN температура Нееля магнитооптического материала, выполняется соотношение |Mм+ Mб|/|Mм|>>1,
где Мм суммарный магнитный момент всех медленнорелаксирующих магнитных ионов;
Мб суммарный магнитный момент всех быстрорелаксирующих магнитных ионов.
RxLnyFeuMvO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In.
RxLny-zCazFeuMy MezO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In;
Me Ge и/или Si;
z ≅ 1,5.
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y и/или La, Bi;
Me Ge и/или Si;
z ≅ 1,5.
RxLny-p-zGdpCazFeuMv-zMezO12,
где R Tm, Yb, En, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In;
Me Ge и/или Si;
z ≅ 1,5;
p ≅ 2,8.
RxLny-pGdpFeuMvO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In;
p ≅ 2,8.
RxLny-z-pGdpCazFeu-zMezO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
Me Ge и/или Si;
z ≅ 1,5;
p ≅ 2,8.
RxLny-2qCa2qFeu-qVqMvO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd, и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In;
q ≅ 0,7.
RxLny-2q-rCa2q+rFeu-q-rVqMerO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
Me Ge и/или Si;
q ≅ 0,7;
r ≅ 0,7.
RxLny-z-2qGdzCa2qFeu-qVqMvO12,
где R Tm, Yb, Er, Ho, Dy, Tb, Eu, Nd и/или Pr;
Ln Lu, Y, La и/или Bi;
M Ga, Al, Sc и/или In;
z ≅ 1,5;
q ≅ 0,7.
37. Элемент по п. 36, отличающийся тем, что величина ΔT удовлетворяет соотношению |ΔT|/TN<< 1.P
Рандошкин В.В | |||
и др | |||
Прикладная магнитооптика | |||
- М.: Энергоатомиздат, 1990, с | |||
Приспособление, заменяющее сигнальную веревку | 1921 |
|
SU168A1 |
Там же, с | |||
Способ укрепления под покрышкой пневматической шины предохранительного слоя или манжеты | 1917 |
|
SU185A1 |
Авторы
Даты
1997-12-10—Публикация
1993-01-25—Подача