СПОСОБ ОБРАБОТКИ ВАНАДИЕВОГО ШЛАКА Российский патент 1998 года по МПК C21C5/36 C21C5/28 

Описание патента на изобретение RU2105073C1

Изобретение относится к металлургии и может быть использовано при обработке ванадиевого шлаков, в частности для снижения окисленности шлака и обогащения его по содержанию ванадия.

При пирометаллургической переработке ванадийсодержащих чугунов в сталеплавильных агрегатах получают кислые или основные ванадиевые шлаки.

Кислые ванадиевые шлаки содержат более 13 мас.% V2О5, более 30 мас.% Feобщ, до 0,15 мас.% Р [1].

Основные ванадиевые шлаки содержат менее 13 мас.% V2О5, менее 30 мас.% Feобщ, более 0,15 мас.% Р и не могут быть переработаны по существующим технологиям гидрометаллургического способа.

Наиболее близким по технической сущности и достигаемому результату является способ селективного восстановления элементов из ванадийсодержащего шлака в две стадии: обогащение шлака восстановлением оксидов железа углеродом, металлотермическое восстановление обогащенного шлака и отделение восстановленного металла от шлака [2].

Недостатком способа является необходимость подготовки шлака для подачи его в плавильный агрегат и использования агрегата для расплавления шлака, что связано с дополнительными энергозатратами.

Задача изобретения - получение основного ванадиевого шлака, пригодного для переработки по существующим технологиям. Техническим результатом является снижение в шлаке оксидов железа и фосфора и повышение в нем массовой доли ванадия.

Технический результат достигается тем, что в известном способе, предусматривающем восстановительное обогащение ванадиевого шлака углеродом, металлотермическое восстановление обогащенного шлака и отделение восстановленного металла от шлака, по изобретению восстановительное обогащение шлака производят углеродом при выпуске жидкого шлака из сталеплавильного агрегата, а металлотермическое восстановление производят элементами с большим, чем у углерода сродством к кислороду при температурах жидкого шлака, которые подают ниже поверхности и/или под струю расплава.

Способ по изобретению предусматривает восстановительное обогащение шлака производить углеродом кокса, каменных углей, боя угольных футеровок и электродов, а металлотермическое восстановление обогащенного шлака производить сплавами и лигатурами, содержащими алюминий, кремний, кальций, магний, титан.

Обработку ванадиевого конвертерного шлака производят в сталеплавильном агрегате и/или в ковше, футерованным огнеупорами, обладающими более высокими, чем у шамота огнеупорными свойствами. Углерод и элементы для металлотермического восстановления могут вводиться в струе газа-носителя ниже поверхности расплава.

Сущность изобретения основана на том, что углерод, взаимодействуя с оксидами железа в ванадиевом шлаке, понижает его окисленность, а образующиеся газы создают восстановительную атмосферу, интенсивно перемешивают расплав и способствуют восстановлению фосфора из шлака.

По изобретению допускается введение углеродсодержащих материалов в сталеплавильный агрегат и/или в ковш. При введении углеродсодержащих материалов в сталеплавильный агрегат необходимо учитывать степень восстановления фосфора для получения заданной марки стали. Остальную часть углеродсодержащих материалов, необходимых для восстановления оксидов железа и фосфора, вводят в ковш.

Расход углеродсодержащих материалов определяется стехиометрическим расчетом для восстановления железа и фосфора из оксидов ванадиевого шлака с коэффициентом 1,2.

В качестве углеродсодержащих материалов используется кокс, каменный уголь, бой угольных футеровок и электродов.

Для более полного удаления железа и фосфора из основного ванадиевого шлака в ковш вводятся сплавы и лигатуры, содержащими алюминий, кремний, кальций, магний и титан, расход которых определяется экспериментально.

Выпуск основного ванадиевого шлака из сталеплавильного агрегата производится в разогретый ковш, футерованным огнеупорами, обладающими более высокими, чем у шамота огнеупорными свойствами, поскольку шамотная футеровка не обладает необходимой шлакоустойчивостью.

Углерод и элементы для металлотермического восстановления основного ванадиевого шлака, например коксик фракцией до 2 мм и сечка алюминия, могут подаваться в струе газа-носителя ниже поверхности расплава.

Опыты проводились в кислородных конвертерах емкостью 160 т, оснащенных бункерами для подачи углеродсодержащих материалов по тракту сыпучих материалов.

Пример 1. В кислородный конвертер загрузили 22 т металлолома и залили 144 т чугуна следующего состава, мас.%: С 4,3; Si 0,35; Тi 0,25; V 0,45; Mn 0,3; Р и S 0,05. После продувки плавки кислородом через четырехсопловую фурму с интенсивностью 380 куб.м/мин в течение 22 мин получили полупродукт с температурой 1645oС следующего состава, мас.%: С 0,06; Si следы, Ti 0,005; Mn 0,03; Р и S 0,025 и основной шлак содержащий, мас.%: FeO 22,4; СаО 44,0; SiO2 13,8; V2O5 6,4; TiO2 3,0; MnO 3,2; MgO 5,2; Al2O3 1,6; Р 0,5.

В конвертер по тракту сыпучих материалов загрузили коксик в количестве 500 кг и после выпуска полупродукта слили полученный основной ванадиевый шлак в разогретый ковш, футерованный магнезитовым кирпичом. По ходу слива под струю шлака присадили 500 кг коксика. После слива в расплав шлака присадили алюминий в количестве 32 кг.

Из ковша через шиберный затвор слили восстановленный металл в изложницу, а обработанный шлак слили в шлаковую чашу. После охлаждения и дробления шлак имел следующий состав, мас.%: FeO 3,4; СаО 53,8; SiO2 17,6; V2O5 8,9; TiO2 3,6,; MnO 3,0; MgO 6,2; Аl2O3 1,9; Р 0,08.

Пример 2. В кислородный конвертер загрузили 20 т металлолома и залили 160 т чугуна следующего состава, мас.%: С 4,2; Si 0,30; Ti 0,25; V 0,44; Mn 0,3; Р и S 0,05. После продувки плавки кислородом через четырехсопловую фурму с интенсивностью 380 куб.м/мин в течение 23 мин получили полупродукт с температурой 1655oС следующего состава, мас.%: С 0,05; Si cледы, Ti 0,005; V 0,005; Mn 0,03; Р и S 0,022 и основной шлак, содержащий, мас.%: FeO 25,6; СаО 42,5; SiO 13,2; V2O5 6,7; TiО2 3,2; MnO 3,2; MgO 4,2; Al O 1,2; Р 0,5.

После выпуска полупродукта слили полученный основной ванадиевый шлак в разогретый ковш, футерованный магнезитовым кирпичом. По ходу слива под струю шлака присадили 1000 кг коксика. После слива в расплав шлака присадили 32 кг алюминия.

Из ковша через шиберный затвор слили восстановленный металл в изложницу, а обработанный шлак слили в шлаковую чашу. После охлаждения и дробления шлак имел следующий состав, мас.%: FeO 2,8; СаО 54,8; SiO2 18,1; V2O5 9,1; TiO2 4,3; MnO 3,0; MgO 5,9; Al2O3 1,5; Р 0,07.

Использование предлагаемой технологии позволяет перерабатывать ванадиевые чугуны в кислородных конвертерах моно-процессом, получать промышленно используемый основной ванадиевый шлак с низкой массовой долей фосфора и сохранить сквозное извлечение ванадия в товарные продукты на существующем уровне.

Похожие патенты RU2105073C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ПРИРОДНОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2118376C1
СПОСОБ ПРОИЗВОДСТВА МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Беловодченко А.И.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Куклинский М.И.
  • Ляпцев В.С.
  • Милютин Н.М.
  • Петренев В.В.
  • Полянский А.М.
  • Фетисов А.А.
  • Чернушевич А.В.
RU2118380C1
СПОСОБ СОВМЕЩЕННОГО ПРОЦЕССА НАНЕСЕНИЯ ШЛАКОВОГО ГАРНИСАЖА И ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ С ПОНИЖЕННЫМ РАСХОДОМ ЧУГУНА 2008
  • Пак Юрий Алексеевич
  • Шахпазов Евгений Христофорович
  • Глухих Марина Владиславовна
RU2389800C1
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ 2002
  • Наконечный Анатолий Яковлевич
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Аникеев С.Н.
  • Платов С.И.
  • Капцан А.В.
RU2228372C1
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ 1995
  • Ляпцев В.С.
  • Милютин Н.М.
  • Фетисов А.А.
  • Чернушевич А.В.
  • Киричков А.А.
  • Комратов Ю.С.
  • Петренев В.В.
  • Криночкин Э.В.
  • Беловодченко А.И.
  • Куклинский М.И.
  • Заболотный В.В.
  • Александров Б.Л.
RU2064509C1
СПОСОБ ПРОИЗВОДСТВА ПРИРОДНО-ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ ПРИ ПЕРЕДЕЛЕ ВАНАДИЕВОГО ЧУГУНА В КИСЛОРОДНЫХ КОНВЕРТЕРАХ МОНОПРОЦЕССОМ С РАСХОДОМ МЕТАЛЛОЛОМА ДО 30% 1997
  • Александров Б.Л.
  • Аршанский М.И.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2105072C1
Способ обогащения конвертерного ванадиевого шлака 1989
  • Гладышев Николай Григорьевич
  • Афонин Серафим Захарович
  • Кошелев Станислав Павлович
  • Винокуров Геннадий Васильевич
  • Данилович Юрий Афанасьевич
  • Колганов Геннадий Сергеевич
  • Поляков Василий Васильевич
  • Ивашина Евгений Нектарьевич
  • Широков Виктор Васильевич
  • Филимонов Владимир Алексеевич
SU1613503A1
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ ВАНАДИЙСОДЕРЖАЩИМИ МАТЕРИАЛАМИ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Чернушевич А.В.
  • Ильин В.И.
  • Батуев С.Б.
  • Фетисов А.А.
  • Исупов Ю.Д.
  • Одиноков С.Ф.
  • Пилипенко В.Ф.
  • Федоров Л.К.
  • Кромм В.В.
RU2140995C1
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО ШЛАКА 1997
  • Александров Б.Л.
  • Ватолин Н.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Пластинин Б.Г.
  • Полянский А.М.
  • Чернушевич А.В.
  • Шаврин С.В.
RU2109831C1
СПОСОБ ВЫПЛАВКИ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОПЕЧИ 1996
  • Зубарев А.Г.
  • Дорофеев Г.А.
  • Рабинович Е.М.
  • Тамбовский В.И.
  • Ситнов А.Г.
  • Тартаковский И.М.
RU2102497C1

Реферат патента 1998 года СПОСОБ ОБРАБОТКИ ВАНАДИЕВОГО ШЛАКА

Изобретение относится к области металлургии и может быть использовано при обработке ванадиевых шлаков, в частности для снижения окисленности шлака и обогащения его по содержанию ванадия. По способу обработки ванадиевого шлака восстановительное обогащение шлака производят углеродом при выпуске жидкого шлака из сталеплавильного агрегата. Металлотермическое восстановление обогащенного шлака производят элементами с большим, чем у углерода сродством к кислороду при температурах жидкого шлака. Элементы подают ниже поверхности и/или под струю расплава. Затем отделяют восстановленный металл от обогащенного шлака. Восстановительное обогащение шлака производят углеродом кокса, каменных углей, боя угольных футеровок и электродов, а металлотермическое восстановление обогащенного шлака сплавами и лигатурами, содержащими алюминий, кремний, кальций, магний, титан. Обработку ванадиевого конвертерного шлака производят в сталеплавильном агрегате и/или в ковше, футерованным огнеупорами, обладающими более высокими, чем у шамота огнеупорными свойствами. Углерод и элементы для металлотермического восстановления могут вводиться в струе газа-носителя ниже поверхности расплава. Восстановление оксидов железа и удаление фосфора из основного ванадиевого шлака позволяет перерабатывать ванадиевые чугуны в кислородных конвертерах моно-процессом, получать промышленно используемый ванадиевый шлак и сохранить сквозное извлечение ванадия в товарные продукты на существующем уровне. 4 з.п.ф-лы.

Формула изобретения RU 2 105 073 C1

1. Способ обработки ванадиевого шлака, включающий восстановительное обогащение шлака углеродом, металлотермическое восстановление обогащенного шлака, отделение восстановленного металла от шлака, отличающийся тем, что восстановительное обогащение шлака производят углеродом при выпуске жидкого шлака из сталеплавильного агрегата, а металлотермическое восстановление производят элементами с большим, чем у углерода, сродством к кислороду при температурах жидкого шлака, которые подают ниже поверхности и/или под струю расплава. 2. Способ по п. 1, отличающийся тем, что восстановительное обогащение шлака производят углеродом кокса, каменных углей, боя угольных футеровок и электродов. 3. Способ по п.1, отличающийся тем, что металлотермическое восстановление обогащенного шлака производят сплавами и лигатурами, содержащими алюминий, кремний, кальций, магний, титан. 4. Способ по п.1, отличающийся тем, что обработку ванадиевого конвертерного шлака производят в сталеплавильном агрегате и/или в ковше, футерованном огнеупорами, обладающими более высокими, чем у шамота, огнеупорными свойствами. 5. Способ по п.1, отличающийся тем, что углерод и элементы для металлотермического восстановления подают в струе газа-носителя ниже поверхности расплава.

Документы, цитированные в отчете о поиске Патент 1998 года RU2105073C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Транспортер для перевозки товарных вагонов по трамвайным путям 1919
  • Калашников Н.А.
SU102A1
Производство ванадиевого шлака и стали в конвертерах
- НТМК, Н.Тагил, 1995, с
Светоэлектрический измеритель длин и площадей 1919
  • Разумников А.Г.
SU106A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Рысс М.А
Производство ферросплавов
- М.: Металлургия, 1995, с
Дровопильное устройство 1921
  • Рульнев С.О.
SU302A1

RU 2 105 073 C1

Авторы

Александров Б.Л.

Комратов Ю.С.

Криночкин Э.В.

Кузовков А.Я.

Петренев В.В.

Даты

1998-02-20Публикация

1997-04-25Подача