ПИРОМЕТРИЧЕСКИЙ ДАТЧИК ПОЖАРНОЙ СИГНАЛИЗАЦИИ Российский патент 1998 года по МПК G08B17/12 

Описание патента на изобретение RU2109345C1

Изобретение относится к устройствам пожарной сигнализации и предназначено для обнаружения очага возгорания по инфракрасному излучению источника повышенной температуры. Изобретение может быть использовано в автоматических системах пожарной сигнализации для обеспечения взрывобезопасности газодисперсных систем (сплошная фаза - газ) в производственных условиях и на угольных шахтах. А также в системе пожаротушения, установленной во взрывоопасном помещении.

Известны пожарные извещатели, реагирующие на нагрев температурного датчика до определенного предела, при котором происходит срабатывание извещателя, и использующие термодатчики следующих типов: терморезисторные, термомагнитные, термоэлектрические, теплоплавкие, реагирующие на избыточную температуру [1] . Недостатком данных пожарных извещателей является то, что они имеют большую инерционность срабатывания (от нескольких секунд до сотен секунд).

Известны пожарные извещатели фотоэлектрического типа, реагирующие на излучение в инфракрасной, видимой или ультрафиолетовой области спектра [2], [3] , [4], и срабатывающие при превышении мощностью излучения определенного предела. Недостатком таких пожарных извещателей является то, что они срабатывают после возгорания и не могут быть использованы для предотвращения возникновения открытого пламени. Также на температуру срабатывания таких датчиков оказывают большое влияние оптические характеристики среды и излучательная способность источника излучения.

Известно также устройство обнаружения возгораний в пневмотранспорте, содержащее фотодиод в качестве фотоприемника излучения, блок усиления с обратной связью для усиления фототока фотодиода и схему срабатывания [5]. По сути в нем использован радиационный метод определения температуры. Фототок пропорционален суммарной мощности излучения, приходящейся на спектральную область чувствительности используемого фотодиода и является возрастающей функцией температуры.

Недостатком данного устройства является то, что температура очага пожара, при которой срабатывает известное устройство, зависит от оптических свойств воздушной среды, от расстояния до очага возгорания и от излучательной способности сгораемого вещества и продуктов горения.

Наиболее близким по технической сущности к предлагаемому техническому решению является пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы [6].

Недостатком данного датчика является то, что температура очага пожара, при которой срабатывает известное устройство, зависит от оптических свойств воздушной среды, от расстояния до очага возгорания и от излучательной способности сгораемого вещества и продуктов горения.

Задача настоящего технического решения - исключение влияния на порог срабатывания пожарного датчика оптической плотности среды и излучательных способностей веществ в очаге возгорания, обнаружение начальной стадии возгорания (до появления пламени) за счет понижения инерционности и температурного порога срабатывания датчика.

Поставленная задача решается за счет того, что в пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы согласно изобретения, введены блок термостабилизации темновых токов фотодетекторов, разделитель светового потока и оптическая система для фокусировки потока на чувствительных окнах фотодетекторов, а исполнительная схема содержит соединенные последовательно блок вычисления отношения двух значений напряжения, блок усреднения и пороговый детектор, при этом последовательно установленные оптическая система для фокусировки потока на чувствительных окнах фотодетекторов и разделитель светового потока оптически связаны с фотодетекторами, которые подключены к неинвертирующим входам усилителей, а выходы блока термостабилизации подключены к инвертирующим входам усилителей, вход блока вычисления отношения двух значений напряжения является входом исполнительной схемы.

Сущность данного технического решения поясняется с помощью функциональной схемы, представленной на чертеже. Устройство содержит объектив 1, диафрагму 2, линзу 3, разделитель светового потока 4, светофильтры 5 и 6, инфракрасные фотодетекторы 7, усилители 9 и 10, блок 8 термостабилизации темновых токов фотодетекторов, блок 11 вычислителения отношения двух значений напряжения, блок усреднения 12, пороговый детектор 13, блок питания 14.

Пирометрический датчик пожарной сигнализации работает следующим образом. Инфракрасное излучение охраняемого объекта при помощи объектива 1 фокусируется, и пройдя через отверстие диафрагмы 2, разделяется светоделительной пластиной 4 на два потока. Каждый из этих потоков через светофильтр 5 или 6 с разными спектрами пропускания попадает на фотодетекторы 7. Линза 3 совместно с объективом 1 образуют оптическую систему, которая служит для фокусировки потока на чувствительные окна фотодетекторов. Светофильтры 5 и 6 выделяют из светового потока различные участки спектра. Сигналы с фотодетекторов 7 подаются на неинвертирующие входы усилителей 9, 10 и усиливаются усилителями 9, 10. Для исключения влияния температуры корпуса датчика на значение фототоков фотодетекторов с блока термостабилизации темновых токов фотодетекторов 8 на инвертирующие входы усилителей 9 и 10 подается сигнал равный темновым токам фотодетекторов при данной температуре их корпуса. Сигналы с усилителей подаются в исполнительную схему, которая состоит из блока 11 вычисления отношения двух напряжений, блока усреднения 12, порогового детектора 13 и блока питания 14. В блоке 11 вычисляется отношение напряжений с выходов усилителей 9, 10. Это отношение прямо пропорционально температуре источника теплового излучения. Полученный таким образом температурный сигнал в блоке 12 усредняется по нескольким измерениям для исключения влияния шумов в измерительном и оптических трактах. Усредненный сигнал температуры подается на блок 13 порогового детектора и, если он превышает температуру срабатывания, то блок 13 формирует на выходе устройства сигнал, означающий начало возгорания. Блок 14 питания служит для формирования и стабилизации напряжений, необходимых для работы электрической схемы.

В результате использования в качестве приемников излучения быстродействующих фотодетекторов достигается малая инерционность датчика возгорания (менее 1 миллисекунды). Благодаря применению спектрального метода определения температуры исключается влияние расстояния до разноудаленных объектов, их излучательных способностей и оптических свойств промежуточой среды на температуру срабатывания датчика. Использование инфракрасных фотодетекторов и светосильной оптической схемы позволяет снизить температуру срабатывания пожарного датчика. При превышении температуры любого объекта в поле зрения объектива 1 заданного значения (от 400 град.С и выше) через время, не превышающее значение инерционности датчика, на его выходе устанавливается сигнал, сообщающий о начале возникновения возгорания.

Используемые источники информации.

1. Шаровар Ф. И. Устройства и системы пожарной сигнализации.- 2-е изд., перераб. и доп.-М.: Стройиздат, 1985. с. 375, ил.

2. SU, авторское свидетельство, 637839, кл. G 08 B 17/12, 1978.

3. SU, авторское свидетельство, 1168992, кл. G 08 B 17/12, 1985.

4. SU, авторское свидетельство, 667984, кл. G 08 B 17/06, 1979.

5. SU, патент, 1795894, кл. A 62 C 3/04, 1993.

6. SU, патент, 5339070, кл. G 08 B 17/12, 1994.

Похожие патенты RU2109345C1

название год авторы номер документа
ПИРОМЕТРИЧЕСКИЙ ДАТЧИК КООРДИНАТ ОЧАГА ВОЗГОРАНИЯ 2006
  • Сыпин Евгений Викторович
  • Терентьев Сергей Александрович
  • Павлов Андрей Николаевич
  • Леонов Геннадий Валентинович
  • Повернов Евгений Сергеевич
RU2318242C1
ДАТЧИК-ИЗВЕЩАТЕЛЬ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ 2004
  • Шайдуров Георгий Яковлевич
  • Гондарев Виктор Викторович
  • Лукьянчиков Валерий Николаевич
  • Амельчугов Сергей Петрович
  • Горностаев Роман Владимирович
  • Васильев Сергей Александрович
RU2289850C2
МОДУЛЯЦИОННЫЙ ДАТЧИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ 2003
  • Амельчугов Сергей Петрович
  • Горностаев Роман Владимирович
  • Васильев Сергей Александрович
  • Тихонов Владимир Петрович
  • Кириллов Олег Викторович
RU2279713C2
МОДУЛЬ РЕГИСТРАЦИИ АВАРИЙНОЙ СИТУАЦИИ 2004
  • Шайдуров Георгий Яковлевич
  • Гондарев Виктор Викторович
  • Лукьянчиков Валерий Николаевич
  • Амельчугов Сергей Петрович
  • Коротков Юрий Андреевич
  • Горностаев Роман Владимирович
RU2298231C2
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ 1997
  • Леонов Г.В.
  • Мещеряков Р.В.
RU2111478C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОСТОЙКИХ ХРОМОВЫХ ПОКРЫТИЙ 1999
  • Идрисов И.Г.
  • Ковалев В.В.
RU2148109C1
УЛЬТРАЗВУКОВАЯ КОЛЕБАТЕЛЬНАЯ СИСТЕМА 1997
  • Барсуков Р.В.
  • Хмелев В.Н.
  • Цыганок С.Н.
RU2141386C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОУПРОЧНЯЕМЫХ ХРОМОВЫХ ПОКРЫТИЙ 1998
  • Идрисов И.Г.
  • Ковалев В.В.
  • Беляев В.А.
RU2147630C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ УЛЬТРАЗВУКОВОЙ РАЗМЕРНОЙ ОБРАБОТКИ 1998
  • Хмелев В.Н.
  • Барсуков Р.В.
  • Цыганок С.Н.
RU2131794C1
РОЛИКОМАЯТНИКОВАЯ МЕЛЬНИЦА 1996
  • Шестаков К.В.
  • Фарков Г.С.
  • Гузь М.А.
RU2108866C1

Реферат патента 1998 года ПИРОМЕТРИЧЕСКИЙ ДАТЧИК ПОЖАРНОЙ СИГНАЛИЗАЦИИ

Изобретение предназначено для обнаружения момента образования очага пожара по тепловому излучению в инфракрасной области спектра. Сущность изобретения заключается в использовании метода спектрального отношения для контроля температуры охраняемых объектов. Световой поток теплового излучения фокусируется объективом и с помощью светоделительной пластины разделяется на два потока. Из них светофильтрами с разными спектрами пропускания выделяются необходимые участки спектра. Мощность светового потока в каждом выделенном участке спектра регистрируется фотодетекторами. Сигналы с фотодетекторов усиливаются, определяется их отношение, которое после усреднения подается на пороговый детектор. При превышении им определенного значения на выходе датчика устанавливается электрический сигнал о начале возгорания. 1 ил.

Формула изобретения RU 2 109 345 C1

Пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы, отличающийся тем, что в него введены блок термостабилизации темновых токов фотодетекторов, разделитель светового потока и оптическая система для фокусировки потока на чувствительных окнах фотодетекторов, а исполнительная схема содержит соединенные последовательно блок вычисления отношения двух значений напряжения, блок усреднения и пороговый детектор, при этом последовательно установленные оптическая система для фокусировки потока на чувствительных окнах фотодетекторов и разделитель светового потока оптически связаны с фотодетекторами, которые подключены к неинвертирующим входам усилителей, а выходы блока термостабилизации подключены к инвертирующим входам усилителей, вход блока вычисления отношения двух значений напряжения является входом исполнительной схемы.

Документы, цитированные в отчете о поиске Патент 1998 года RU2109345C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Шаровар Ф.И
Устройства и системы пожарной сигнализации
Приспособление для установки двигателя в топках с получающими возвратно-поступательное перемещение колосниками 1917
  • Р.К. Каблиц
SU1985A1
Ручной дровокольный станок 1921
  • Федоров В.С.
SU375A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
SU, авторское свидетельство, 637839, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
SU, авторское свидетельство, 1168992, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
SU, авторское свидетельство, 667894, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
SU, патент, 1795894, кл
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
US, патент, 5339070, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1

RU 2 109 345 C1

Авторы

Леонов Г.В.

Станкевич Ю.Л.

Каширин С.И.

Даты

1998-04-20Публикация

1995-10-10Подача