Изобретение относится к области создания мембран для химических источников тока, конкретно, мембран с высокой проницаемостью по кислороду и в то же время с высокими барьерными свойствами по отношению к парам воды. Мембраны этого типа могут найти применение для сухих металло-воздушных источников тока различного типа: цинк - воздушных, литий - воздушных, алюминий - воздушных и др.
В настоящее время в химических источникам тока (ХИТ) этого типа используются либо калиброванные отверстия для натекания атмосферного кислорода к воздушному электроду, либо сепарационные материалы на основе поливинилхлорида или полиолефинов, типа применяемых в аккумуляторах. Такие сепараторы предлагаются, например, в патенте [1] (имеют пористость 65,5 - 85,5% и размер пор до 1,03 - 8,6 мкм и изготовлены из полиэтилена с добавкой перхлорвиниловой смолы). Однако, они, при достаточной, как правило, кислородопроницаемости, имеют слишком высокую паропроницаемость, и поэтому не обеспечивают стабильной работы металло-воздушного ХИТ.
Известны половолоконные композиционные мембраны для осушки воздуха от паров воды [2] , состоящие из микропористой мембраны - подложки из поливинилиденфторида или других полимеров, и покрытия на основе сшитого полидиметилсилоксана, не перекрывающего пористой структуры подложки, при поверхностной плотности покрытия на подложке из ПВДФ, составляющей 9 г/м2. Пористость мембран - подложек составляет 60%, размер пор плотного слоя 1 - 20 мкм, а рыхлого слоя - до 100 мкм. Паропроницаемость мембран с такой пористой структурой составляет 260•10-5 см3/см2 с см рт.ст., что более, чем на порядок больше необходимого уровня, а проницаемость по кислороду 3,71•10-5 см3/см2 см рт.ст., что значительно ниже необходимого уровня.
Наиболее близки к изобретению полупроницаемые асимметричные мембраны из поливинилиденфторида [3], которые характеризуются тем, что имеют среднюю пористость более 50% (предпочтительно более 80%), толщину от 50 до 250 мкм (предпочтительно от 70 до 120 мкм), средний диаметр пор от 0,01 мкм до 1 мкм (предпочтительно от 0,1 до 0,3 мкм). Однако, их пористость и размеры пор слишком велики, и по этой причине эти мембраны не обладают барьерными свойствами по отношению к парам воды, необходимыми для эффективной работы в сухих металло-воздушных источниках тока. Так, в примере 4 патента для варианта мембраны на тканевой подложке приведено значение паропроницаемости 4400 г/м2 за 24 ч, или около 18 мг/см2 • ч, что на два десятичных порядка выше предельно допустимого уровня паропроницаемости.
Мембраны для сухих металло-воздушных химических источников тока (ХИТ) должны обладать специальными требованиями по проницаемости, а именно: высокой проницаемостью по кислороду из атмосферы внутрь ХИТ для снабжения кислородом воздушного электрода ХИТ, и одновременно низкой проницаемостью по парам воды как снаружи внутрь, так и изнутри наружу для независимости характеристик ХИТ от влажности окружающей атмосферы, предотвращения коррозии электродов и сохранения оптимальной консистенции пастового электрода. Необходимые характеристики проницаемости мембран определяются следующими величинами:
Проницаемость по кислороду не менее 4,56 см3/мин•см2 (2,70 м3/м2•ч).
Проницаемость по парам воды не более 1,178 мг/ч•см2.
Таким образом, требования к мембранам для сухих металло-воздушных ХИТ имеют специфический характер, и мембраны, созданные для других областей применения, не могут удовлетворить этим требованиям.
Цель изобретения - создание гидрофобных мембран на фторопластовой основе, отвечающих требованиям сухих металло-воздушных ХИТ по основным характеристикам массопереноса: высокой проницаемости кислорода, не менее 4,56 см3/мин•см2 (или 2,70 м3/м2•ч), и низкой проницаемости паров воды, не более 0,178 мг/ч•см2.
Поставленная цель достигается за счет того, что предлагается мембрана на основе сополимеров винилиденфторида с тетрафторэтиленом при массовом содержании тетрафторэтилена в сополимере 8 - 70%, асимметричной структуры, имеющая размеры пор от 0,0015 до 0,030 мкм, и объемную пористость от 35 до 60%. Для повышения стабильности мембрана может содержать дополнительно со стороны плотного слоя поверхностный слой из полидиметилсилоксана, поливинилтриметилсилана, политриметилсилилпропина, поливинилиденфторида или его сополимера с тетрафторэтиленом, при поверхностной плотности слоя не более 5 г/м2. Для увеличения прочности мембрана может дополнительно включать крупнопористую волокнистую подложку из полипропилена или капрона, при массовом соотношении волокнистой подложки и фторопластового слоя мембраны 1:(0,3-1,5).
Материал предлагаемой асимметричной мембраны состоит из сополимеров винилиденфторида с тетрафторэтиленом при массовом содержании последнего от 8 до 70%. При большем содержании тетрафторэтилена теряется растворимость сополимера в кетонных растворителях, т.е. возможность растворного формования мембран. При меньшем содержании тетрафторэтилена физико-механические свойства сополимера недостаточно отличаются от свойств чистого поливинилиденфторида - слишком жесткоцепного полимера, чтобы образовать стабильную микропористую структуру со столь малыми размерами пор. Асимметричная структура мембраны характеризуется тем, что одна ее сторона, более глянцевая, имеет более плотную пористую структуру, а вторая, более матовая, - более рыхлую структуру. При этом, необходимые параметры паропроницаемости достигаются лишь в том случае, если мембрана обращена глянцевой стороной к потоку; в противном случае величина паропроницаемости в полтора - два раза выше. При размере пор мембраны менее 0,0015 мкм и при объемной пористости менее 35% проницаемость мембран по кислороду становится ниже необходимого уровня 2,7 м3/м2•ч ати (в последнем случае пористость становится преимущественно закрытого типа). Если размер пор мембран превышает 0,030 мкм или их объемная пористость превышает 60%, то величина паропроницаемости превышает предельно допустимое значение 0,178 мг/ч•см2. Предельное значение поверхностной плотности покрытия мембраны модифицирующим слоем не более 5 г/м2 определено исходя из того, что при хорошей совместимости материалов покрытия и основы и хороших пленкообразующих свойств полимеров, используемых для покрытия, при данной плотности покрытия оно распределено равномерно по поверхности мембраны, и в то же время не образует сплошного диффузионного слоя, перекрывающего поры мембраны - подложки. Применение крупнопористых волокнистых подложек из полипропилена или капрона, при массовом соотношении волокнистой подложки и фторопластового слоя мембраны 1:(0,3-1,5) обеспечивает достаточное упрощение мембраны, необходимое при уплотнении ее в конструкции ХИТ, и в то же время позволяет избежать излишнего расхода материала.
Предлагаемая структура мембран с необходимыми характеристиками формируется в условиях формирования из раствора полимера в кетонном растворителе (ацетон, метилэтилкетон), в состав которого введен также "плохой" растворитель или осадитель для данного полимера, в данном случае вода и ее смеси с алифатическими спиртами. Такой формовочный раствор наносится фильерой на полированную стеклянную пластину и сушится при контроле давления паров растворителя (т. н. метод "сухого формования"). Этим методом удается получить мембраны из сополимеров винилиденфторида с размерами от 0,030 до 0,008 мкм. Мембраны имеют ярко выраженную асимметричную структуру, причем для мембран с наименьшими порами сторона обращенная к воздушной атмосфере характеризуется размером пор в 2,5 - 3 раза меньшим, чем сторона, обращенная к подложке. Для получения мембран с размером пор меньшим чем 0,008 мкм использован метод "мокрого формования", по которому после непродолжительного подсушивания раствора на подложке он вместе с подложкой погружается в ванну с осадительным раствором аналогичного состава (водный раствор алифатического спирта), после чего сформированная мембрана высушивается на воздухе. Характеристики мембран приведены в табл. 1.
Можно видеть, что мембраны с предлагаемыми характеристиками пористой структуры обеспечивают необходимый высокий уровень проницаемости кислорода, и одновременно высокие барьерные свойства по отношению к парам воды. Из представленных в табл. 1 данных можно видеть, что мембраны с необходимыми показателями могут быть получены методами как сухого, так и мокрого формования.
С целью повышения стабильности мембран со столь микропористой асимметричной структурой (особенно при нагреве до 60-70oC, в условиях деформации разного рода при уплотнении в изделиях, для длительной эксплуатации), мембраны для сухих металло-воздушных ХИТ должны быть дополнительно покрыты слоем совместимого с фторопластовым сополимером гидрофобного пленкообразующего полимера.
В табл. 2 приведены данные испытаний проницаемости модифицированных мембран, полученных нанесением на фторопластовую мембрану по примеру 3 в табл. 2 предлагаемых пленкообразующих гидрофобных полимеров.
Полидиметилсилоксан (наносился из разбавленных 2 - 3%-ных растворов олигодиметилсилоксандиола в гексане с последующей химической сшивкой тетраэтоксисиланом в присутствии катализатора холодного отверждения - октоата олова, или радиальной сшивкой; примеры 12 и 13).
Поливинилтриметилсилан (наносился из 1 - 3%-ных растворов в хлорированных углеводородах, пример 14).
Политриметилсилилпропин из растворов в толуоле (пример 15).
Сополимер винилиденфторида с 40% тетрафторэтилена из раствора в метилэтилкетоне (пример 16).
Приведенные в табл. 2 результаты получены после отработки методики нанесения каждого из полимеров покрытия таким образом, чтобы поверхностная плотность покрытия не превышала 5 г/м2. Установлено, что в этом случае модифицирующий полимер не образует сплошного слоя, и по этой причине не вызывает появления диффузионного сопротивления переносу. Это подтверждается тем, что измерения проницаемости модифицированных мембран по паре газов кислород/азот не обнаружили селективного переноса; величина селективности достигает максимального значения 1,45 для мембран ПВТМС/СПЛ ВДФ-40%ТФЭ, тогда как "идеальная" селективность по этим газам достигает для ПВТМС величины 3,5. Проницаемость модифицированных мембран незначительно уменьшается по сравнению с исходными фторопластовыми мембранами, но по-прежнему отвечает требованиям для применения в металло-воздушных ХИТ. Испытания по стабильности модифицированных мембран после длительной термообработки в течение 96 ч при 70oC показали, что их свойства практически не изменяются, тогда как для немодифицированных мембран падение проницаемости кислорода достигло 15 - 20%. Результаты испытаний свидетельствуют об эффективности поверхностной модификации для получения мембран, сохраняющих высокую проницаемость по кислороду, и в то же время достаточные барьерные свойства по парам воды.
Источники информации
1. Патент России N 2017761, кл. C 08 L 23/06, заявл. 5.05.91, опубл. 15.08.94.
2. Патент США N 4900626, кл. 428/398, заявл. 28.07.87, опубл. 13.02.90.
2. ЕПВ N 0330072, кл. B 01 D 13/04, заявл. 16.02.89, опубл. 30.08.89.
название | год | авторы | номер документа |
---|---|---|---|
МНОГОСЛОЙНАЯ МЕДИЦИНСКАЯ ПЛЕНКА | 2001 |
|
RU2228768C2 |
МЕДИЦИНСКАЯ ПОВЯЗКА | 1995 |
|
RU2125859C1 |
КОМПОЗИЦИОННАЯ НЕОРГАНИЧЕСКАЯ ПОРИСТАЯ МЕМБРАНА | 2000 |
|
RU2171708C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ МЕМБРАН С ФУЛЛЕРЕНСОДЕРЖАЩИМ ПОЛИМЕРНЫМ СЕЛЕКТИВНЫМ СЛОЕМ | 2009 |
|
RU2414953C1 |
КОМПОЗИЦИЯ ДЛЯ ОБРАБОТКИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ | 1992 |
|
RU2064991C1 |
ПОРИСТАЯ ФТОРУГЛЕРОДНАЯ МЕМБРАНА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И ПАТРОННЫЙ ФИЛЬТР НА ЕЕ ОСНОВЕ | 1995 |
|
RU2119817C1 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРОПЛАСТОВОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ | 1995 |
|
RU2070444C1 |
ПОЛУПРОНИЦАЕМАЯ ФТОРУГЛЕРОДНАЯ МЕМБРАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2005 |
|
RU2297875C2 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ВОЗДУШНЫХ ВЗВЕСЕЙ | 2019 |
|
RU2720784C1 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРПОЛИМЕРНЫХ МЕМБРАН ДЛЯ ФИЛЬТРАЦИИ ЖИДКОСТЕЙ | 1999 |
|
RU2158625C1 |
Изобретение относится к полупроницаемой пористой асимметричной мембране, состоящей из сополимера винилиденфторида с тетрафторэтиленом при массовом содержании тетрафторэтилена 8 - 70%, размер пор мембраны составляет 0,0015 - 0,030 мкм, а объемная пористость составляет 35 - 60%. 2 з.п. ф-лы, 2 табл.
СПОСОБ УПАКОВКИ | 0 |
|
SU330072A1 |
Авторы
Даты
1998-05-20—Публикация
1996-11-22—Подача