СПОСОБ ОЧИСТКИ ПРИРОДНЫХ ВОД Российский патент 1998 года по МПК C02F1/463 

Описание патента на изобретение RU2121979C1

Изобретение относится к области очистки природных, например артезианских, вод или вод из поверхностных источников от различных примесей, а также для обесцвечивания их с последующим использованием в качестве питьевой воды и может быть использовано также для очистки оборотных и сточных вод.

Известен способ электрохимической обработки минерализованной природной и сточной воды, включающий смешение исходной воды с реагентом, содержащим хлорид-ионы, с последующей подачей ее в межэлектродное пространство электролизера с нерастворимыми перфорированными анодами, на которые нанесены диафрагмы и через которые осуществляют подачу в межэлектродное пространство реагента - деионизированной воды (авт.св. СССР N 1498715, кл. C 02 F 1/461, 1989 - аналог).

В ряде случаев непригодность природных вод в питьевых целях обусловлена их цветностью, связанной с присутствием в них гуматов.

Для извлечения гуминовых кислот из природных гуматсодержащих соединений существует способ перевода гуминовых кислот в раствор с последующим осаждением, причем перевод кислот в раствор ведут в катодной камере электролизера, заполненного 0,1-0,5% раствором K2SO4. Процесс ведут при циркуляции растворов в анодной и катодной камерах дополнительного электролизера (а.с. N 1721025 кл. C 02 F 1/46, 1992 г.) - аналог.

Основной недостаток известных способов очистки и обесцвечивания природных вод состоит в использовании различных химических реагентов в значительном количестве, что экологически нецелессобразно в схемах водоподготовки питьевых вод, требует значительных затрат, связанных с получением и доставкой этих реагентов к месту их использования. Кроме того, цветность природных вод после их очистки с использованием химических реагентов не всегда достигает значения, отвечающего нормативам ГОСТа для питьевых вод.

К числу недостатков способов очистки вод с использованием хлорсодежращих реагентов (активный хлор и перхлораты, образующиеся в процессе электролиза вод в присутствии NaCl) следует отнести возможность образования токсичных хлорорганических соединений.

Способы очистки вод с химическими реагентами весьма чувствительны к колебаниям исходного состава вод, температуры и кислотно-основных свойств, в результате чего избыток непрореагировавшего химического реагента часто попадает в питьевую воду, направляемую потребителю.

В качестве прототипа заявленного способа выбран способ обесцвечивания природной воды электрохимическим методом (В.Д.Дмитриев, Е.Н.Анисимова и Н.С. Соловьева. Обесцвечивание природной воды электрохимическим методом. "Водоснабжение и санитарная техника". -М.: Стройиздат, 1971, N 5, с. 12-13).

В прототипе обесцвечивание природных вод осуществляют методом электрокоагуляции в аппарате с использованием алюминиевых анодов.

Однако применение прототипа к исследуемым северным водам Иреляхского водохранилища, расположенного в Якутии, не дало положительного результата: цветность конечного продукта превышала в 1,5-2 раза нормативное значение, предусмотренное ГОСТом для питьевых вод и равное 20 град.

Технический результат изобретения заключается в обесцвечивании и обеззараживании природной воды до нормативов ГОСТа по питьевой воде при снижении энергозатрат и исключении дорогостоящих химических реагентов и замене дефицитных алюминиевых анодов на аноды из стали Ст.3 или на комбинированные аноды из стали Ст.3 и алюминия.

Сущность предлагаемого способа очистки природных вод состоит в том, что природную воду подвергают фильтрации для удаления механических примесей, электрокоагуляции в бездиафрагменном аппарате с растворимыми анодами из стали Ст.3 или комбинированными анодами из стали Ст.3 и алюминия при плотности тока от 2 до 60 А/м2, отделению осадка от осветленной воды отстаиванием и последующей подачей этого осадка в очищаемую воду перед стадией электрокоагуляции при соотношении объема осадка к воде от 1:50 до 1:500, контрольной фильтрации осветленной воды с отделением осадка и электрохимической обработке фильтрата в бездиарфгаменном электролизере с нерастворимыми анодами.

Пример осуществления способа.

Лабораторные и стендовые эксперименты, а также опытно-промышленная проверка эффективности способа очистки вод осуществлена на природной воде Иреляхского водохранилища, являющегося единственным источником питьевой воды для бытовых объектов г. Мирного.

Вода этого бассейна характеризуется низким солесодержанием, малой мутностью и высокой цветностью, сезонно изменяющимися в широких пределах, что обусловливает сложность ее очистки обычными химическими методами.

Цветность данных природных вод обусловлена присутствием в них гумусовых веществ и их соединений с различными металлами, вымытыми из горных пород.

Комплексы гумусовых веществ с металлами, образующиеся при прохождении воды через различные породы, очень устойчивы и практически не выводятся из иреляхской воды используемыми химическими методами очистки.

Очищаемую воду предварительно фильтруют для удаления механических примесей, а затем проводят электрокоагуляцию в бездиафрагменном аппарате с растворимыми анодами с расстоянием между ними 4-8 мм. Катоды были выполнены из нержавеющей стали, а аноды - из стали Ст.3, а также комбинированные аноды из стали Ст. 3 и алюминия; после электрокоагуляции отделяют осадок от осветленной воды путем отстаивания, при этом полученный осадок подают на смешение с водой, направляемой на электрокоагуляцию, в соотношении объемов осадок:очищаемая вода от 1:50 до 1:500, а осветленную воду фильтруют и полученный фильтрат обеззараживают путем обработки в бездиафрагменном электролизере с нерастворимыми электродами.

Экспериментально установлено, что в процессе электрокоагуляции исследуемой природной воды оптимальны аноды, выполненные из стали Ст.3 и алюминия, что подтверждено данными табл. 1 (оп. 4).

Из табл. 1 видно, что использование анодов из стали Ст.3 и алюминия в процессе электрокоагуляции позволяет получить максимальное снижение цветности иреляхской воды до 8 град. при меньшей плотности тока - 30 А/м2 (оп. 4).

Из-за дефицита и достаточно высокой стоимости алюминия растворимые аноды предлагается выполнить из стали Ст.3 и для интенсификации процесса электрокоагуляции подавать полученный в процессе электрокоагуляции осадок в очищаемую воду перед электрокоагуляцией при соотношении объема электрокоагулянта к воде от 1:50 до 1:500.

Полученный осадок после электрокоагуляции и отстаивания обработанной воды без сушки содержит твердую фазу в количестве около 10-15%.

Выделенный осадок после хранения в течение одних, семи, десяти и пятнадцати суток подавали в очищаемую воду перед электрокоагуляцией. В результате установлено, что эффективность осадка снижается незначительно при хранении его до 10 суток, после чего резко падает (см. чертеж).

Оптимальное соотношение объема осадка к объему очищаемой воды зависит от колебаний состава последней и, в основном, от количества и состава присутствующих в ней органических компонентов и их комплексов с различными металлами.

Для эффективного обесцвечивания природной воды Иреляхского водохранилища методом электрохимической коагуляции в аппарате с растворимыми анодами из стали Ст. 3 необходима подача осадка к очищаемой воде при объемном соотношении от 1:50 до 1:500.

Из табл. 2 видно, что при поддержании в процессе электрокоагуляции объемного соотношения осадка и очищаемой воды в пределах от 1:50 до 1:500 полученный целевой продукт после осветления обработанной воды в течение 30 мин и 12 часов характеризовался цветностью от 10,5 до 19,0 град. и от 5,4 до 15,9 град. , соответственно (оп. 3-7). Изменение этих показателей при одинаковой плотности тока, равной 30 А/м2, достигалось изменением удельного расхода электроэнергии от 23,5 до 0,8 кВт•ч/м3. В ходе стендовых испытаний установлено, что при объемном соотношении электрокоагулянта и очищаемой воды, равном 1: 10, скорость осаждения коагулянта с "цветной" органикой довольно велика: при 30-минутном отстаивании и фильтрации осветленного продукта цветность фильтрата составила 5,4 град., изменяясь впоследствии незначительно. Однако в данном случае затруднительно получение необходимого количества осадка и требует повышенного расхода электроэнергии (оп. 2).

Изменение соотношения объемов осадка и очищаемой воды до 1:600 нежелательно, т.к. при 30-минутном отстаивании осветленный продукт после фильтрации по цветности практически не отличался от исходной воды, а после 12-часового отстаивания цветность была равна 25 град., что выше предусмотренного нормами ГОСТа (табл. 2, оп. 8).

В табл. 3 представлены результаты по обесцвечиванию воды Иреляхского водохранилища после ее электрокоагуляции при изменении плотности тока от 1 до 80 А/м2 и различном объемом соотношении осадка и очищаемой воды. Из приведенных в табл. 3 данных видно, что оптимальный диапазон значений плотности тока в процессе электрокоагуляции, обеспечивающий получение продукта с цветностью 20 град. и менее, составляет 2-60 А/м2. Необходимо отметить, что при соотношении осадка к очищаемой воде 1:100 (оп. 1-7) цветность, равная 18,5 град. , может быть получена после электрокоагуляции исходной воды при плотности тока 2 А/м2 после отстаивания в течение 12 часов (оп. 3). При соотношении осадка к очищаемой воде 1:350 (оп. 8-14) минимальная плотность тока в процессе электрокоагуляции очищаемой воды, обеспечивающая получение продукта с цветностью менее 20 град., должна быть увеличена до 20-30 А/м2 (оп. 11).

То есть для получения одной и той же цветности (20 град.) с увеличением объема очищаемой воды при одном и том же количестве осадка в процессе электрокоагуляции минимальная и достаточная плотность тока должна быть увеличена.

Увеличение плотности тока в процессе электрокоагуляции более 60 А/м2 нецелесообразно вследствие получения конечного продукта, по цветности близкого продукту, полученному при 60 А/м2 (6 и 13).

В табл. 4 приведены результаты очистки воды Иреляхского водохранилища в условиях прототипа (оп. 1) и заявленного способа (оп. 2).

Из табл. 4 видно, то осуществление очистки исследуемой воды Иреляхского водохранилища в условиях заявленного способа эффективнее, чем в условиях прототипа, цветность конечного продукта ниже в 1,6 - 2,4 раза, а расход электроэнергии меньше в 2,4 раза; операция обеззараживания проводится без использования хлорагентов, образующих токсичные соединения с присутствующими в исходной воде органическими веществами.

При очистке воды в условиях заявленного способа его эффективность значительно выше, чем в режиме прототипа: показатели относительной цветности - D/D0 в заявляемом способе в 1,6 и 2,4 меньше, чем для прототипа.

По заключению центра санэпиднадзора г. Мирного после очистки иреляхской воды в конечном продукте колииндекс был менее 3 и роста общего микробного числа (ОМЧ) не наблюдалось.

В целом, при осуществлении очистки иреляхской воды по заявленному способу в сравнении с прототипом себестоимость 1 м3 очищенной воды снижается в 1,5 - 2 раза.

Похожие патенты RU2121979C1

название год авторы номер документа
СПОСОБ ЛИПКОСТНОЙ СЕПАРАЦИИ 1998
  • Чантурия В.А.
  • Двойченкова Г.П.
  • Трофимова Э.А.
  • Богачев В.И.
  • Трубецкой К.Н.
  • Дюкарев В.П.
  • Зуев В.М.
  • Калитин В.Т.
  • Зуев А.В.
  • Махрачев А.Ф.
  • Кобылкин О.И.
  • Кубалов В.Б.
  • Пономарева С.Г.
RU2123889C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Чантурия В.А.
  • Соложенкин П.М.
  • Никитин Г.М.
  • Соложенкин И.П.
RU2214967C2
УСТРОЙСТВО ДЛЯ ЭКСПЕДИЦИОННОЙ ПЕРЕРАБОТКИ РУД 1998
  • Сухов Н.Н.
  • Демин А.М.
  • Трубецкой К.Н.
  • Чантурия В.А.
RU2149065C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД 1999
  • Чантурия В.А.
  • Соложенкин П.М.
  • Соложенкин И.П.
RU2214971C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД 2000
  • Трубецкой К.Н.
  • Чантурия В.А.
  • Соложенкин П.М.
  • Никитин Г.М.
  • Соложенкин И.П.
RU2215697C2
СПОСОБ ЦИАНИРОВАНИЯ 1998
  • Сухов Н.Н.
  • Демин А.М.
  • Трубецкой К.Н.
  • Чантурия В.А.
RU2154118C2
СПОСОБ ОЧИСТКИ МАГНЕТИТОВЫХ КОНЦЕНТРАТОВ ОТ СЕРЫ ЭЛЕКТРОЛИТИЧЕСКИМИ РАСТВОРАМИ ГИПОХЛОРИТА 2012
  • Чантурия Валентин Алексеевич
  • Миненко Владимир Геннадиевич
  • Каплин Алексей Иванович
  • Томская Елена Семеновна
RU2530040C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД 1999
  • Чантурия В.А.
  • Соложенкин П.М.
  • Краснов Г.Д.
  • Лавриненко А.А.
  • Крапивный Д.В.
  • Соложенкин И.П.
RU2214970C2
МИКРОКАЛОРИМЕТР ТИАНА-КАЛЬВЭ 1995
  • Бобин В.А.
  • Клебанов А.Ф.
RU2105968C1
Способ очистки минерализованных растворов от мышьяка 1987
  • Назарова Галина Никитична
  • Воронцова Людмила Владимировна
SU1502476A1

Иллюстрации к изобретению RU 2 121 979 C1

Реферат патента 1998 года СПОСОБ ОЧИСТКИ ПРИРОДНЫХ ВОД

Способ предназначен для очистки природных вод от различных примесей, обесцвечивания их с последующим использованием в качестве питьевой воды, а также для очистки оборотных и сточных вод. Воду отделяют от механических примесей с последующей электрокоагуляцией с использованием анодов из стали Ст. 3 или комбинированных анодов из стали Ст.3 и алюминия при плотности тока 2-60 А/м2. После электрокоагуляции отделяют осадок от осветленной воды отстаиванием и подают осадок на смешение с очищаемой водой перед стадией электрокоагуляции при соотношении объемов осадка и воды от 1:50 до 1:500, фильтруют осветленную воду, отделяют фильтрат и обрабатывают в бездиафрагменном электролизере с нерастворимыми электродами. Комбинированные электроды состоят из стали Ст.3 и алюминия в соотношении 6:1 Осадок на смешение с очищаемой водой подают при содержании твердой фазы в осадке 10 - 15%, при этом осадок можно использовать для очистки воды в течение 1 - 10 дней после его получения. Способ позволяет сократить энергозатраты при снижении себестоимости за счет использования менее дефицитных анодов из Ст.3. 3 з.п.ф-лы, 4 табл., 1 ил.

Формула изобретения RU 2 121 979 C1

1. Способ очистки природных вод, включающий ее коагуляцию, отличающийся тем, что перед электрокоагуляцией отделяют механические примеси, а электрокоагуляцию ведут с использованием анодов из стали Ст.3 или комбинированных анодов из стали Ст.3 и алюминия при плотности тока 2 - 60 А/м2 с последующим отделением осадка от осветленной воды и подачей осадка на смешение с очищаемой водой перед стадией электрокоагуляции при соотношении объемов осадка и воды от 1 : 50 до 1 : 500, фильтрацией осветленной воды и электрохимической обработкой фильтрата в бездиафрагменном электролизере с нерастворимыми анодами. 2. Способ по п.1, отличающийся тем, что комбинированные аноды изготовлены из стали Ст.3 и алюминия в соотношении 6 : 1. 3. Способ по п.1, отличающийся тем, что осадок на смешение с очищаемой водой подают при содержании твердой фазы в осадке 10 - 15%. 4. Способ по пп.1 и 2, отличающийся тем, что осадок можно использовать для очистки воды в течение 1 - 10 дней после его получения.

Документы, цитированные в отчете о поиске Патент 1998 года RU2121979C1

Дмитриев В.Д
и др
Обесцвечивание природной воды электрохимическим методом
- Водоснабжение и санитарная техника, - М.: Стройиздат, 1971, N 5, с
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
Способ очистки воды 1986
  • Заболоцкий Виктор Иванович
  • Гнусин Николай Петрович
  • Горбачев Виталий Федорович
  • Баркар Леонид Иванович
  • Тризин Юрий Георгиевич
SU1433904A1
Способ извлечения гуминовых кислот из природных гуматсодержащих соединений 1988
  • Абрамец Александр Макарович
  • Буслов Валерий Александрович
  • Пунтус Филипп Антонович
SU1721025A1
Способ электрохимической обработки маломинерализованных природных и сточных вод 1986
  • Зыков Евгений Дмитриевич
  • Беклемешев Юрий Алексеевич
  • Семушкин Владимир Васильевич
  • Бабеньчик Федор Васильевич
SU1498715A1
Способ очистки сточной воды 1979
  • Даниловский Юрий Сергеевич
  • Константинов Александр Павлович
SU882945A1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД КРАСИЛЬНО-ОТДЕЛОЧНЫХ ПРОИЗВОДСТВ 1993
  • Харзеева С.Э.
  • Гень Л.И.
RU2074123C1
US 4295946 A1, 1981
DE 4329272 C1, 1994.

RU 2 121 979 C1

Авторы

Чантурия В.А.

Двойченкова Г.П.

Трофимова Э.А.

Богачев В.И.

Гаценбиллер Э.И.

Трубецкой К.Н.

Калитин В.Т.

Зуев А.В.

Кубалов В.Б.

Соловьев А.А.

Смольников В.А.

Монастырский В.Ф.

Гусев А.П.

Бычкова Г.М.

Даты

1998-11-20Публикация

1997-08-06Подача