РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ САЖИ Российский патент 1999 года по МПК B01J10/00 C09C1/48 C09C1/50 

Описание патента на изобретение RU2131766C1

Изобретение относится к промышленности технического углерода, а именно к реактору для получения сажи.

Полученная сажа применяется как наполнитель полимерных материалов.

Известен реактор для получения сажи, содержащий последовательно и соосно установленную камеру горения со средствами для сжигания топлива с воздухом, смесительное сопло с сырьевыми форсунками и реакционную камеру со средствами для охлаждения сажегазовых продуктов (Ильин А.И. и др. "Оценка размеров первичных агрегатов" в сб. "Пути развития промышленности углерода." -М., 1978, с. 28-36). Сажа, получаемая с такого реактора, не удовлетворяет потребителей по усиливающим свойствам.

Известен также реактор для получения сажи, которая имеет размер частиц в пределах 110-600 ангстрем.

Реактор содержит последовательно и соосно установленные камеру горения со средствами для сжигания топлива с воздухом, смесительное сопло с сырьевыми форсунками и форсунками для воды реакционную камеру со средствами для охлаждения и вывода сажегазовых продуктов. Сажа, полученная с такого реактора, характеризуется высокими усиливающими свойствами, но в настоящее время уже не удовлетворяет все возрастающим требованиям промышленности. Этот реактор выбран нами в качестве прототипа (RU 2097398 C1, 27.11.97).

Целью настоящего изобретения является повышение усиливающих свойств сажи, повышение прочностных показателей полимерных материалов. Указанная цель достигается тем, что реактор для получения сажи с размером частиц 110 - 600 ангстрем, содержащий последовательно установленные камеру горения со средствами для сжигания топлива с воздухом, смесительное сопло с сырьевыми форсунками и реакционную камеру со средствами для охлаждения сажегазовых продуктов, смесительное сопло имеет многоканальную форму с общей площадью проходного сечения 0,036 - 0,36 м2 при отношении диаметра канала (dк) к диаметру общей площади проходного сечения смесительного сопла (dэф) в пределах 0,35 - 0,72. Реактор используют для получения сажи со степенью срастания частиц в агрегате в пределах 0,03 - 0,09.

Согласно изобретению общая площадь проходного сечения смесительного сопла изменяется в пределах 0,036 - 0,36 м2. В случае использования реактора с многоканальным соплом, имеющим общую площадь проходного сечения меньше чем 0,036 м2 /табл. 5, прим. 1/, с одной стороны возникают очень сильные рециркуляционные потоки, затрудняющие ламинарное движение продуктов, с другой получается сажа, которая по усиливающим свойствам не отличается от прототипа.

В случае использования реакторов с многоканальным соплом, имеющим общую площадь проходного сечения больше чем 0,36 м2, получается сажа, по усиливающим свойствам не отличающаяся от сажи, полученной по прототипу, с добавлением трудностей, возникающих при изготовлении фасонных огнеупоров при значительном увеличении числа каналов.

Согласно изобретению отношение диаметра канала (dк) к диаметру общей площади проходного сечения смесительного сопла (dэф) должно находиться в пределах 0,72 - 0,35 (в одноканальном смесительном сопле такой коэффициент равен 1). Увеличение верхнего предела приводит к появлению неоднородности сажи /табл. 5, прим. 5, 6/ (кривая распределения частиц по размерам становится значительно шире), а уменьшение предела ниже 0,35 приводит к получению сажи со значительным количеством неразложившихся тяжелых углеводородов на ее поверхности /табл. 5, прим. 7/. Данные, подтверждающие эти выводы, приведены в табл. 5.

Эффект повышения усиливающих свойств сажи, полученной на реакторе с многоканальным смесительным соплом при общей площади проходного сечения смесительного сопла в пределах 0,036 - 0,36 м2 и отношении dк/dэф в пределах 0,35 - 0,72, требует некоторого пояснения.

Разработка конструкции большегрузных реакторов с нагрузкой по сырью 4000 - 6000 кг/ч вызвала необходимость увеличения габаритных размеров реактора, в том числе и диаметра смесительного сопла. При этом опытным путем было показано, что увеличение диаметра смесительного сопла выше определенного резерва при соблюдении параметров движения потока (скорость, время, температура) приводит к получению сажи с пониженными усиливающими свойствами. Для иллюстрации в табл. 1 приведены данные по изменению модуля вулканизованной резиновой смеси, полученной на стандартном рецепте с каучуком СКМС-30-АРК и опытной сажей.

Анализ данных табл. 1 давал основания предположить, что при дальнейшем увеличении нагрузки на реактор и увеличении габаритов реактора можно производить только полуактивные и малоактивные сажи.

Повышение нагрузки на реактор при сохранении диаметра смесительного сопла привело к получению сажи со значительным увеличением содержания неразложившегося сырья, это подтверждается данными табл. 2.

При резком увеличении нагрузки на реактор с 1500 кг/ч до 4000 кг при диаметре смесительного сопла 0,200 м выход сажи резко упал, наблюдалось сначала увеличение, а затем падение внешней поверхности сажи и йодного числа вместе с резким повышением содержания неразложившегося сырья на саже.

Решением задачи явилось создание многоканального смесительного сопла, что позволило увеличить нагрузки на реактор до 6000 кг и иметь при этом повышение усиливающих свойств сажи.

Это, по-видимому, объясняется тем, что в процессе сажеобразования огромное значение имеет тепловое (световое) излучение от раскаленной стенки смесительного сопла, а точнее интенсивность этого излучения к единице объема сажегазовой смеси в смесительном сопле. Действительно пропорциональное увеличение диаметра приводит к пропорциональному увеличению площади внутренней поверхности смесительного сопла, а изменение объема находится в степенной зависимости от диаметра. Увеличение диаметра смесительного сопла после определенного предела приводит к тому, что "величина" излучения не охватывает полностью зону сажеобразования и как результат начинается увеличение среднего размера частиц сажи. Это явление полностью коррелирует с геометрией смесительного сопла, т.е. с общей площадью проходного сечения смесительного сопла (в случае, например, применения трехканального смесительного сопла с диаметром 0,15 м). Общая площадь проходного сечения равна сумме проходных сечений каналов Sэф= S1 + S2 + S3.


при этом рассчитанный диаметр смесительного сопла равен диаметру общей площади проходного сечения

с некоторым ограничением знаков после запятой.

Таким образом, в случае использования реактора, имеющего смесительное сопло, состоящее из одного канала с диаметром 0,262 м /табл. 3, опыт 4/, общей площадью проходного сечения 0,054 м2, мы получаем сажу с резко выраженным падением усиливающих свойств, при этом отношение площади внутренней поверхности канала к его объему

а в случае использования трехканального сопла с диаметром 0,15 м = Соотношение этих величин определяет выход сажи с высокими усиливающими свойствами, эти величины определены экспериментально.

Испытания таких реакторов привели дополнительно к совершенно неожиданному результату: стабильности распределения частиц сажи по размерам с уменьшением значения dк/dэф при d1 = d2 = d3 ... dn = dk (данные приведены в табл. 3).

Реактор по предлагаемому изобретению описан в нижеследующих примерах.

Пример 2. Реактор (фиг. 1) для получения сажи включает корпус 1, в котором последовательно расположены камеры горения 2, смесительное сопло, состоящее из двух каналов 8, 9 диаметром 0,15 м, общей эффективной площадью поперечного сечения 0,036 м2 при отношении dк/dэф = 0,7. Каналы смесительного сопла расположены параллельно оси реактора. В оба смесительных канала установлены сырьевые форсунки 11, реакционная камера 5 для вывода охлажденных сажегазовых продуктов из реактора. Камера горения оборудована воздушной камерой 6 для подачи воздуха и камерой для ввода газа 7. В реакционной камере установлены водяные форсунки для предзакалки и охлаждения сажегазовой смеси. Камера горения 2, смесительное сопло, реакционная камера и устройство для вывода охлажденных сажегазовых продуктов из реактора образованы футеровкой 16, выполненной внутри корпуса 1 из огнеупорных изделий. Все остальные реакторы, описанные в примерах, работают аналогичным способом, изменялось только количество каналов смесительного сопла и их диаметр.

Предварительно нагретый до температуры 400oC воздух в количестве 14000 м3/ч и топливный газ в количестве 1000 м3/ч подают в камеру горения 2. В поток продуктов полного горения в каналы смесительного сопла через сырьевые форсунки подают нагретое до температуры 220oC углеводородное сырье (смесь антраценового масла с тяжелым газойлем в соотношении 80 : 20 вес. ч.) в количестве 4000 кг/ч.

В каналах смесительного сопла сырье разлагается с образованием сажегазовой смеси. Площадь общего поперечного сечения смесительного сопла равна сумме площадей поперечных сечений каждого канала. Из каналов смесительного сопла сажегазовые продукты поступают в реакционную камеру, в конце которой осуществляют охлаждение продуктов до температуры 700oC путем впрыскивания через водяные форсунки подогретой до 95oC воды. Далее сажегазовые продукты охлаждают через стенку и выводят на фильтрацию.

После фильтрации сажу гранулируют известными способами и анализируют. Данные по процессу сажеобразования и качеству сажи приведены в табл. 4.

Опыт повторили, используя реактор, имеющий смесительное сопло, состоящее из трех каналов диаметром dк = 0,150 м, общей площадью поперечного сечения смесительного сопла 0,054 м2 при отношениия dк/dэф = 0,598 (фиг. 2).

На реакторе получали сажу согласно описанию примера 2 c увеличением нагрузки по сырью. Данные по качеству сажи приведены в табл. 4, пример 3.

Опыт повторили, используя реактор, имеющий смесительное сопло состоящее из 4-х каналов диаметром 0,150 м, общей площадью поперечного сечения смесительного сопла 0,072 м2 при отношении dк/dэф = 0,500 (фиг. 3). На реакторе получали сажу согласно описанию примера 2 с увеличением нагрузки по сырью. Данные по качеству сажи приведены в табл. 4, пример 4.

Опыт повторили, используя реактор, имеющий смесительное сопло из 6 каналов диаметром 0,150 м, общей площадью поперечного сечения 0,108 м2 при dк/dэф = 0,40 (фиг. 4). На реакторе получали сажу согласно описанию примера 2 с увеличением нагрузки по сырью. Данные по качеству сажи приведены в табл. 3, пример 6.

Для сравнения использовали контрольные опыты.

Пример 1 - реактор для получения сажи по прототипу с диаметром смесительного сопла 0,150 м, на реакторе получали сажу, используя нагрузку по сырью 1500 кг/ч. Данные по качеству сажи приведены в табл. 3, пример 1.

Для контроля также использовали реакторы, имеющие одноканальное смесительное сопло эквивалентное площади поперечного сечения K1 - двух каналов, K2 - 3 каналов, K3 - 4 каналов, K4 - 5 каналов.

Сажу получали согласно описанию примера 2, данные в табл. 4 - контроль.

Как следует из анализа данных табл. 4, в случае использования смесительного сопла диаметром 0,15 м (пример 1) (одноканальное) при нагрузках 1500 кг получается сажа не отличающаяся от прототипа, а использование реакторов с диаметром смесительного сопла, имеющим общую площадь поперечного сечения аналогичную 2, 3, 4, 5 каналам (опыты K1, K2, K3, K4), приводит к возрастанию среднего размера частиц, уменьшению раскрытости агрегата, заметному снижению модуля и прочности вулканизованных резин.

Пример 3. Условия опыта примера 2 повторили в примерах 8 - 12, используя каналы с диаметром 0,200 м.

Данные, характеризующие смесительное сопло реактора, нагрузку по сырью на реактор, свойства сажи и вулканизатов приведены в табл. 4 вместе с контрольными данными (7, K5, K6, K7).

Как следует из анализа данных (примеры 8 - 12), многоканальное смесительное сопло с общей площадью поперечного сечения от 0,0618 до 0,187 м2 и от 0,07 до 0,4 повышает возможность поднять нагрузку по сырью на реактор до 5000 кг/ч (более чем в 3 раза), при этом имеется высокая однородность частиц по размерам, раскрытость агрегата и высокие показатели вулканизатов.

Пример 4. Для подтверждения сказанного повторили условия опыта 2, применяя многоканальное смесительное сопло в реакторе с диаметром каналов 0,25 м (опытные примеры 14 - 18, контрольный 13 - K8, K9, K10) и с диаметром 0,3 м (опытные примеры 20 - 23, контрольный - пример 19).

Таким образом, применение в большегрузном реакторе для получения сажи многоканального смесительного сопла с общей площадью проходного сечения 0,036 - 0,36 м2 при отношении диаметра канала к диаметру общей площади походного сечения смесительного сопла в пределах 0,35 - 0,72 приводит к получению сажи, вулканизаты которой на 13 - 20% выше по показателям модуль 300% и прочность на разрыв.

Похожие патенты RU2131766C1

название год авторы номер документа
САЖА ДЛЯ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ, СПОСОБ И РЕАКТОР ДЛЯ ЕЕ ПОЛУЧЕНИЯ 1995
RU2097398C1
СПОСОБ ПОЛУЧЕНИЯ САЖИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Орлов В.Ю.
RU2077544C1
ТЕХНИЧЕСКИЙ УГЛЕРОД, СПОСОБ ЕГО ПОЛУЧЕНИЯ И РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ТЕХНИЧЕСКОГО УГЛЕРОДА 2001
  • Орлов В.Ю.
RU2179564C1
СПОСОБ ПОЛУЧЕНИЯ СЫРЬЕВОЙ КОМПОЗИЦИИ 1995
RU2089579C1
СЫРЬЕВАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ САЖИ 1995
  • Орлов В.Ю.
  • Медников М.М.
  • Орлов Н.Ю.
  • Иваницкий В.А.
  • Смирнов С.Б.
RU2084478C1
Реактор для получения технического углерода 2023
  • Лебедев Антон Евгеньевич
  • Крутилов Дмитрий Алексеевич
  • Овчинников Иван Алексеевич
  • Есин Егор Алексеевич
  • Новиков Тимофей Николаевич
  • Антонова Анастасия Сергеевна
  • Иваничкин Константин Владимирович
  • Силинский Владимир Николаевич
  • Чигирев Михаил Михайлович
  • Лебедева Анна Валентиновна
RU2823103C1
СПОСОБ КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ САЖЕВОГО РЕАКТОРА 2002
  • Орлов В.Ю.
  • Комаров А.М.
  • Орлов Н.Ю.
RU2210580C1
ВУЛКАНИЗУЕМАЯ РЕЗИНОВАЯ СМЕСЬ НА ОСНОВЕ КАРБОЦЕПНОГО КАУЧУКА 1995
  • Орлов В.Ю.
  • Медников М.М.
  • Орлов Н.Ю.
  • Смирнов С.Б.
RU2119508C1
СПОСОБ ПОЛУЧЕНИЯ САЖИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Рогов А.В.
  • Суровикин В.Ф.
  • Сажин Г.В.
RU2083614C1
СПОСОБ ПОЛУЧЕНИЯ САЖИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Суровикин Виталий Федорович
  • Суровикин Юрий Витальевич
  • Шайтанов Александр Георгиевич
RU2389747C1

Иллюстрации к изобретению RU 2 131 766 C1

Реферат патента 1999 года РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ САЖИ

Использование: промышленность технического углерода. Предложен реактор для получения сажи с размером частиц 110-600 ангстрем при степени срастания частиц в агрегате в пределах 0,03-0,09, содержащий последовательно камеру горения со средствами для сжигания топлива с воздухом, смесительное сопло с сырьевыми форсунками и реакционную камеру со средствами для охлаждения сажегазовых продуктов, отличается тем, что смесительное сопло имеет многоканальную форму с общей площадью проходного сечения смесительного сопла 0,036-0,36 м2 при отношении диаметра канала к диаметру общей площади проходного сечения в пределах dк/dэф=0,35-0,72. Реактор позволяет повысить усиливающие свойства сажи. 5 табл., 4 ил.

Формула изобретения RU 2 131 766 C1

Реактор для получения сажи с размером частиц 110-600 ангстрем, содержащий последовательно установленные камеру горения со средствами сжигания топлива с воздухом, смесительное сопло с сырьевыми форсунками и реакционную камеру со средствами для охлаждения сажегазовых продуктов, отличающийся тем, что при получении сажи со степенью срастания частиц в агрегате в пределах 0,03 - 0,09 смесительное сопло имеет многоканальную форму с общей площадью проходного сечения смесительного сопла 0,036 - 0,36 м2 при отношении диаметра канала (dк) к диаметру общей площади проходного сечения (dэф) в пределах dк/dэф = 0,35 - 0,72.

Документы, цитированные в отчете о поиске Патент 1999 года RU2131766C1

САЖА ДЛЯ ПОЛИМЕРНЫХ КОМПОЗИЦИЙ, СПОСОБ И РЕАКТОР ДЛЯ ЕЕ ПОЛУЧЕНИЯ 1995
RU2097398C1
СПОСОБ ПОЛУЧЕНИЯ САЖИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Рогов А.В.
  • Суровикин В.Ф.
  • Сажин Г.В.
RU2083614C1
СПОСОБ ПОЛУЧЕНИЯ САЖИ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Орлов В.Ю.
RU2077544C1
US 4013420 A, 22.03.77
US 4447401 A, 08.05.84
WO 9634918 A1, 07.11.96
JP 59042267 A, 21.03.84.

RU 2 131 766 C1

Авторы

Орлов В.Ю.

Даты

1999-06-20Публикация

1998-04-07Подача