ГУБЧАТОЕ ЖЕЛЕЗО Российский патент 1999 года по МПК C21B13/00 

Описание патента на изобретение RU2139939C1

Изобретение относится к черной металлургии и может быть использовано для производства стали, микролегированной ванадием, и ванадиевого шлака, применяемого в дальнейшем для производства ферросплавов и лигатур.

Известен состав губчатого железа, используемого для изготовления высокопрочных отливок и получения фосфатных шлаков, и содержащего 0,1 - 0,5% V2O5, 0,1 - 0,7% TiO2, 1,0 - 5,0% P2O5, 0,5 - 5,0% C и 25,8 - 99,5 Feмет (1).

Недостатком этого губчатого железа является недостаточное для выплавки легированной ванадием стали содержание окислов ванадия. Кроме того, содержание металлического железа изменяется в широком интервале и процесс выплавки стали из губчатого железа с низким содержание железа металлического связан со значительным снижением производительности электропечи.

Наиболее близким по технической сущности и достигаемому результату является губчатое железо, получаемое из неофлюсованных окатышей Качканарского ГОКа, содержащее, мас. %: 65,5 - 70,0 Feмет, 11,0 - 14,0 FeO, 1,4 - 2,0 C, 1,5-2,4 CaO, 2,8 - 3,2 MgO, 2,4 - 2,6 TiO2, 4,2 - 5,5 SiO2, 2,8 - 3,2 Al2O3, 0,7 - 0,8 V2O5, 0,010-0,015 P2O5, 0,004 -0,006 S, а также окислы железа при отношении железа металлического к общему железу Feмет/Feобщ = 0,84 - 0,91 (2).

Недостатком известного губчатого железа является низкая степень металлизации (Feмет/Feобщ), малое содержание углерода и высокое количество мелких фракций 5-0 мм, достигающее 20%.

Технической задачей изобретения является повышение степени металлизации и выхода товарной продукции (класса выше 5 мм) и увеличение степени усвоения железа и ванадия в процессе выплавки стали в электропечи.

Поставленная задача достигается тем, что в губчатом железе, содержащем SiO2, Al2O3, CaO, MgO, TiO2, V2O5, P2O5, S, C, Feмет и окислы железа, ингредиенты взяты в следующем соотношении, мас.%:
SiO2 - 4,4-5,4
Al2O3 - 3,2-3,6
CaO - 1,6-2,3
MgO - 3,2-3,6
TiO2 - 3,3 - 3,7
V2O5 - 0,7 - 0,9
P2O5 - 0,010-0,015
Окислы Fe - 3,2-7,9
S - 0,004-0,015
C - 2,0 - 3,5
Feмет - Остальное
при этом отношение Feмет/Feобщ и содержание углерода в губчатом железе связаны следующим соотношением Feмет/Feобщ + 0,057 C = 1,03 - 1,17.

Предлагаемое губчатое железо отличается от известных составов повышенным содержанием углерода, а также иным количеством амфотерных окислов (TiO2, Al2O3 и MgO), наличие которых в губчатом железе является известным. Однако, предлагаемое количество этих ингредиентов в составе губчатого железа придает ему такие свойства, которые не проявляются в известных решениях. Так, повышенное количество тугоплавких амфотерных окислов предотвращает от разрушения гранулы в низкотемпературных зонах восстановления высших окислов железа с образованием металлического каркаса и, как следствие, обуславливает повышение выхода годного продукта и увеличение степени металлизации. Известно, что в структуре металлизованных окатышей окислы титана представлены микровключениями размером до 5 мкм, равномерно распределенными в зернах восстановленного железа (2, с. 31), которые вступают в реакцию с углеродом (3, с.7 - 12). В данном случае повышенное содержание TiO2 способствует образованию карбидов титана в больших количествах и увеличению содержания углерода в губчатом железе. Так, увеличение содержания окислов титана до 3,7% позволит получить губчатое железо с повышенным до 3,5% углерода. Другим важным аспектом изобретения является сбалансированное содержание в губчатом железе металлического железа, его окислов, окислов ванадия и углерода. При значении (Feмет/Feобщ + 0,057 C) = 1,03 - 1,17 достигается оптимальная степень усвоения ванадия в процессе плавки губчатого железа, равная 85 - 90%, что позволит получить товарный ванадиевый шлак. При значении этого соотношения меньше 1,03 степень усвоения ванадия снижается и не достигает указанных желаемых 85-90%, а при увеличении соотношения более 1,17 содержание углерода превысит 3,5%, что потребует дополнительной продувки расплава кислородом для доведения стали до оптимального химического состава. Кроме того, повышенное содержание углерода в губчатом железе приведет к выделению слишком большого количества газа в процессе плавки и выплескиванию расплава из печи.

Изобретение иллюстрируется следующими примерами. Для экспериментальной проверки заявляемого состава были составлены 14 смесей. В соответствии с изобретением в качестве рудной части использовали концентрат Гусево-Горского месторождения, к которому добавляли концентрат Качканарского месторождения в количестве 5 - 10%, что обеспечивает повышение содержания окислов алюминия, титана и магния в смеси. Компоненты смешивали, увлажняли до 8,5 - 9,0% и окомковывали. Полученные окатыши обжигали при температуре 1350 - 1370oC, регулируя соотношения рудных и шлаковых минералов путем окисления магнетита при подогреве и диссоциации гематита при обжиге. Для сравнения были приготовлены окатыши из концентрата Лебединского ГОКа. Из обожженных окатышей удаляли класс менее 5 мм, а затем загружали их в обжиговую шахтную печь Оскольского электро-металлургического комбината и осуществляли металлизацию при температуре 900oC восстановительным газом следующего состава, мас.%: H2 57,4 - 68,4, CO 22,9 - 36,4, CO2 2,0 - 2,5, CH4 1,3 - 1,4, H2O остальное. Окатыши с добавкой концентрата Качканарского ГОКа и окатыши из концентрата Оленегорского ГОКа загружали в разные карманы одного контейнера и металлизовали совместно. Составы губчатого железа и их свойства (степень металлизации - fm, x100%, выход годной продукции - + 5 мм, пористость - П, % и прочность на сжатие - G, кг/окатыш) приведены в таблице. В примере 1 представлен состав и свойства губчатого железа, соответствующего наиболее близкому аналогу и полученного в печи Белорецкого металлургического комбината. Состав и свойства губчатого железа по изобретению представлены в примерах 2-9, 11 и 13, а состав и свойства губчатого железа из концентрата Лебединского ГОКа - в примерах 10, 12 и 14. Сравнение свойств губчатого железа по изобретению и прототипу (пример 1) показывает, что губчатое железо по изобретению имеет существенно большую пористость и степень металлизации, а также повышенный выход годной продукции, не требующей брикетирования перед плавкой в электропечи. Сравнение же свойств губчатого железа по изобретению и губчатого железа из концентрата Оленегорского ГОКа показывает, что несмотря на повышенную пористость, степень металлизации и прочность на сжатие, последнее науглеродилось в меньшей степени, т.к. практически не содержит окислов титана, что снижает степень усвоения ванадия в процессе электроплавки и отрицательно сказывается на качестве товарного ванадиевого шлака.

Процесс прямого легирования стали ванадийсодержащим губчатым железом на Оскольском электро-металлургическом комбинате повышает сквозной коэффициент извлечения ванадия (от руды до стали) до 60 - 63% против 30 - 32% по схеме "руда - феррованадий". Использование предлагаемого губчатого железа позволит получить эффект как при производстве низколегированных сталей, так и при выпуске ферросплавов.

Использованная литература
1. Авторское свидетельство СССР N 872559, C 21 B 13/00, 1981.

2. Ровнушкин В.А. и др. "Бескоксовая переработка титаномагнетитовых руд", под редакцией Братчикова С.Г., М., "Металлургия", 1988. 247 с.

3. Кипарисов С.С. и др., "Карбид титана. Получение, свойства, применение", М., "Металлургия", 1987, 216 с.

Похожие патенты RU2139939C1

название год авторы номер документа
СПОСОБ МЕТАЛЛИЗАЦИИ ТИТАНОМАГНЕТИТОВЫХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ЖЕЛЕЗНЫХ ГРАНУЛ И ТИТАНОВАНАДИЕВОГО ШЛАКА 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2399680C2
ШИХТА ДЛЯ ВЫПЛАВКИ ВАНАДИЕВОГО ЧУГУНА 1998
  • Бакума С.С.
  • Мусатов А.С.
  • Гаврилюк Г.Г.
  • Леконцев Ю.А.
  • Шаврин С.В.
  • Абрамов С.Д.
  • Завидонский В.А.
  • Каменских А.А.
  • Карпов А.А.
RU2124563C1
СПОСОБ ВЫПЛАВКИ ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ ИЗ КОМПЛЕКСНОЙ ШИХТЫ 2007
  • Лисиенко Владимир Георгиевич
  • Попов Владимир Владимирович
RU2355780C2
ЖЕЛЕЗОФЛЮС ВАНАДИЙСОДЕРЖАЩИЙ 2009
  • Гильманов Марат Риматович
  • Николаев Федор Павлович
  • Загайнов Сергей Александрович
  • Тлеугабулов Борис Сулейманович
  • Михалёв Владислав Анатольевич
  • Филиппов Валентин Васильевич
  • Киричков Анатолий Александрович
  • Кушнарёв Алексей Владиславович
RU2419658C2
ШИХТА ДЛЯ ВЫПЛАВКИ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ 2008
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Томских Сергей Геннадьевич
  • Поляков Николай Серафимович
  • Поляков Виталий Николаевич
RU2382085C1
СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОГО ВАНАДИЕВОГО ШЛАКА 1990
  • Гладышев Н.Г.
  • Колганов Г.С.
  • Кошелев И.С.
  • Широков В.В.
RU1757238C
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО ТИТАНОМАГНЕТИТОВОГО КОНЦЕНТРАТА 2012
  • Носов Сергей Константинович
  • Рощин Антон Васильевич
  • Рощин Василий Ефимович
  • Черняховский Борис Петрович
RU2492245C1
СПОСОБ ПОЛУЧЕНИЯ ВОЛЛАСТОНИТА 1994
  • Ахатов Каиржан Хасенович[Kz]
  • Башаева Людмила Александровна[Kz]
  • Левинтов Борис Львович[Kz]
RU2089527C1
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ 2008
  • Козлов Владиллен Александрович
  • Карпов Анатолий Александрович
  • Петренев Владимир Вениаминович
  • Вдовин Виталий Викторович
  • Печенкина Анна Аверьяновна
  • Васин Евгений Александрович
  • Чесноков Юрий Анатольевич
RU2385349C2
СПОСОБ ПОЛУЧЕНИЯ СОЕДИНЕНИЙ ВАНАДИЯ 1998
  • Фетисов В.И.
  • Комратов Ю.С.
  • Тетюхин В.В.
  • Мизин В.Г.
  • Малышев С.В.
  • Суслов А.П.
  • Кузовков А.Я.
  • Гришечкин А.И.
  • Добош В.Г.
  • Глаголенко Ю.В.
  • Дрожко Е.Г.
  • Уфимцев В.П.
  • Холодков А.В.
  • Грибов А.А.
  • Куклинский М.И.
  • Беловодченко А.И.
  • Аршанский М.И.
  • Трубин А.Н.
  • Аликин В.И.
  • Александров В.К.
  • Светлаков С.В.
RU2124479C1

Иллюстрации к изобретению RU 2 139 939 C1

Реферат патента 1999 года ГУБЧАТОЕ ЖЕЛЕЗО

Изобретение относится к черной металлургии и может быть использовано для производства стали, микролегированной ванадием, и ванадиевого шлака, используемого для производства ферросплавов и лигатур. Губчатое железо содержит, мас. %: 4,4 - 5,4 SiO2, 3,2 - 3,6 Al2O3, 1,6 - 2,3 CaO, 3,2 - 3,6 MgO, 3,3 - 3,7 TiO2, 0,7 - 0,9 V2O5, 0,010 - 0,015 P2O5, 0,004 - 0,015 S, 3,2 - 7,9 окислов железа, 2,0 - 3,5 С и Feмет остальное. В губчатом железе поддерживают соотношение Feмет/Feобщ + 0,057 С = 1,03 - 1,17. Указанный состав губчатого железа характеризуется высокой степенью металлизации, равной 0,92 - 0,97, удовлетворительными металлургическими свойствами, позволяющими использовать полученное губчатое железо в электрической печи без предварительного брикетирования, а также повышенным содержанием углерода, что, в свою очередь, позволяет повысить усвоение ванадия в процессе плавки стали и получить качественный ванадиевый шлак, пригодный для выплавки ферросплавов. 1 табл.

Формула изобретения RU 2 139 939 C1

Губчатое железо для микролегирования стали и производства ванадиевого шлака, содержащее SiO2, Al2O3, CaO, MgO, TiO2, V2O5, P2O5, S, C, Fe мет и окислы железа, отличающееся тем, что ингредиенты взяты в следующем соотношении, мас.%:
SiO2 - 4,4 - 5,4
Al2O3 - 3,2 - 3,6
CaO - 1,6 - 2,3
MgO - 3,2 - 3,6
TiO2 - 3,3 - 3,6
V2O5 - 0,7 - 0,9
P2O5 - 0,010 - 0,015
Окислы железа - 3,2 - 7,9
S - 0,004 - 0,015
С - 2,0 - 3,5
Fe мет - Остальное
при этом отношение Fe мет/Fe общ и содержание углерода в губчатом железе связаны между собой соотношением Fe мет/Fe общ + 0,057С = 1,03 - 1,17.

Документы, цитированные в отчете о поиске Патент 1999 года RU2139939C1

Ровнушкин В.А
и др
Бескоксовая металлургия титаномагнетитовых руд./Под ред
Братчикова С.Г.-М.: Металлургия, 1988, с.200
Губчатое железо 1979
  • Смирнов Леонид Андреевич
  • Кокушкин Дмитрий Павлович
  • Довгопол Виталий Иванович
  • Карелин Владислав Георгиевич
  • Боковиков Борис Александрович
  • Гоголев Юрий Федорович
  • Тимин Евгений Иванович
SU872559A1
Губчатое железо 1978
  • Соломко Виталий Петрович
  • Дорофеев Генрих Алексеевич
  • Лаппа Сергей Павлович
  • Кодак Александр Васильевич
  • Маняк Николай Александрович
  • Зубарев Алексей Григорьевич
  • Андрюшин Василий Иванович
  • Терещенко Владлен Трофимович
  • Чиркун Павел Иванович
  • Лещенко Иван Трофимович
SU815042A1
Способ переработки железотитановых руд и концентратов 1989
  • Фролов Владимир Александрович
  • Русакова Алефтина Геннадиевна
  • Цветков Юрий Владимирович
  • Фролова Ирина Борисовна
  • Андреев Александр Алексеевич
  • Гурьянов Алексей Васильевич
  • Алексаночкин Олег Анатольевич
  • Волнухин Владимир Алексеевич
  • Ненахова Вера Николаевна
  • Чумаков Александр Николаевич
SU1693073A1

RU 2 139 939 C1

Авторы

Лунегов А.В.

Лазуткин С.Е.

Огуречников А.П.

Марсуверский Б.А.

Лазуткин С.С.

Зинягин Г.А.

Даты

1999-10-20Публикация

1998-11-23Подача