СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ Российский патент 2010 года по МПК C21C5/28 

Описание патента на изобретение RU2385349C2

Изобретение относится к черной металлургии, в частности к способу переработки ванадийсодержащих чугунов с получением полупродукта и ванадийсодержащих шлаков, пригодных для производства оксида ванадия.

При конвертировании ванадийсодержащего чугуна ванадийсодержащие шлаки получают с использованием верхнего кислородного дутья или продувкой снизу воздухом, обогащенным кислородом, с добавкой в ванну охладителя и окислителя, например, окалины. В связи с понижением температуры (1350-1400°С) в реакционной зоне конвертера происходит окисление (выгорание) элементов в ряду Si, Ti, Cr, Mn, V. Регулированием температурой и продолжительностью конвертирования можно сдвинуть равновесие реакций окисления перечисленных элементов и перевести их в шлак при выгорании углерода.

Известен способ переработки ванадийсодержащего чугуна с получением ванадиевого шлака продуванием кислородом в конвертере и присаживания в качестве охладителя и окислителя: окалины 88-93% и флюса 7-12%. Применение флюса позволяет повысить извлечение ванадия из чугуна в шлак и из шлака в техническую пятиокись ванадия (патент RU №2113497, опубл. 1998.06.20).

В способе переработки ванадиевого чугуна дуплекс-процессом в качестве присадки шлакообразующих материалов используют карбонаты кальция и магния в виде доломита, магнезита, дунита, извести (патент RU №1272705, опубл. 2000.09.20).

Вышеуказанные способы не позволяют снизить содержание металловключений в шлаке.

Наиболее близким по технической сущности и достигаемому результату является способ переработки ванадийсодержащих чугунов в конвертере, включающий загрузку охладителя и шлакообразующих материалов (окалина, окатыши, чугун чушковый и др.), заливку ванадийсодержащего чугуна в конвертер, продувку воздухом, обогащенным кислородом, выпуск полупродукта в ковш и выкантовывание шлака в шлаковую чашу (RU 2105072 C1, C21B 5/28, 20.02.1998).

На первой стадии существующего конвертерного передела ванадийсодержащего чугуна получают ванадиевый шлак следующего химического состава, мас.%: 12-18 V2O5, 1-3 CaO, 8-12 MnO, 4-7 Cr2O3, 8-10 TiO2, 15-22 SiO2, 28-30 Fe2O3, 1-3 Al2O3 и 15-20 металловключений. Процесс конвертирования ванадийсодержащего чугуна приостанавливается при содержании в полупродукте 3,2-2,8% углерода, а температура полупродукта в ковше после выпуска из конвертера не должна превышать 1400°С. В процессе выкантовывания из конвертера ванадийсодержащий шлак находится в вязком состоянии с высокой неоднородностью химического состава шпинелидной фазы, распределенной в объеме силикатных компонентов, при этом в шлаке находится более 15% металловключений в виде корольков и дисперсного железа. Корольки, источником которых является высокоуглеродистый полупродукт, в густых шлаках дуплекс-процесса не сливаются с полупродуктом и зависают в шлаке. Дисперсное железо есть результат химического распада алюмината и хромата железа при высоких температурах в твердой фазе. Известно, что вюстит с корундом и трехоксисью хрома взаимодействуют по реакциям:

которые сопровождаются значительным уменьшением энтропии (ΔS=-17 Дж (моль·K)-1 и ΔS=-12 Дж (моль К)-1 соответственно.

Однако эти реакции не обратимы, так как при высоких температурах в твердой фазе происходит их диссоциация с образованием дисперсного железа по уравнениям:

Выделяющиеся газы в вязкой массе обусловливают образование пористой структуры шлака. Физико-химические свойства конвертерного шлака как в процессе его формирования по ходу плавки, так и в твердом состоянии определяются соотношением между шпинелидной, силикатной и металлической фазами.

В технологии переработки ванадиевого конвертерного шлака предусмотрен способ магнитной сепарации металловключений. Однако поэтапное измельчение и двукратное отмагничивание не позволяет получать шлак с низким содержанием металловключений. Приемов механического отделения силикатной от шпинелидной фазы на данный момент не существует, поэтому в дальнейшей переработке участвуют обе фазы.

Существующей технологии присущи следующие недостатки:

- введение «охладителя» и шлакообразующего материала разбавляет ванадиевый шлак до 12-18% V2O5 и не позволяет добиться равномерного химического состава шпинелидной фазы;

- низкая температура (1350-1400°С) и высокая вязкость ванадиевого шлака не позволяют удалить корольки железа в процессе конвертирования и, как следствие, на последующих переделах вводятся дорогостоящие промежуточные помолы с двукратной магнитной сепарацией металловключений;

- шпинелидная ванадийсодержащая фаза шлака в виде неоднородного анизотропного продукта должна смешивается с реакционным агентом и, тем самым, снижает производительность печи окислительного обжига шихты;

- невысокие температуры полупродукта приводят к напряженному балансу тепла на переделе его в сталь на второй стадии мартеновского или конвертерного передела.

Задача изобретения - разработка способа переработки ванадийсодержащих чугунов с получением товарного высокомарганцовистого ванадиевого шлака с однородной высокогомогенной шпинелидной фазой и низкого содержания металловключений, не выше 8%.

Техническим результатом изобретения является снижение содержания металлической фазы в конвертерном шлаке, повышение массовой доли пентаоксида ванадия и оксида марганца в шлаке и получение высокогомогенного смешения ванадия с реакционным агентом в шлаке.

Техническое решение данной задачи сводится к снятию ограничений по массовой доле оксида марганца в ванадиевом конвертерном шлаке, поддержанию отношения массовой доли марганца к ванадию в интервале 1,5-1,7. Для увеличения выхода годного в конвертерном переделе деванадацию чугуна завершают при содержании 2,8-2,0% углерода в полупродукте при температуре выше 1400°С, максимально снижая массовую долю вюстита (FeO) в шлаке за счет повышения оксида марганца (MnO) в шлаке более 20%. Для повышения температуры процесса деванадации ванадийсодержащего чугуна на завершающей стадии подачу охладителя не проводят, а длительность продувки увеличивают, обеспечивая перегрев металла на 100°С более над линией Ликвидуса.

Заявляемые параметры позволяют получить конвертерный шлак с заданными свойствами, перевести вюстит (FeO) в металлическую фазу, снизить вязкость шлака и содержание металловключений, получить однородный высокогомогенный шпинелид марганца и ванадия и повысить массовую долю ванадия и марганца в шлаке.

В качестве охладителя вместо бессемеровского агломерата используют оборотный высокомарганцевый агломерат, который обеспечивает получение шлаков с высоким содержанием ванадия и марганца в жидком состоянии. В таких конвертерных шлаках резко снижается общее содержание железа и металлических включений.

Повышение температуры выше 1400°С и содержания в шлаке MnO более 20% при снижении содержания углерода в полупродукте до 2,8-2,0% приводит к максимальному снижению массовой доли вюститного железа и металловключений в шлаке и повышению в нем концентрации оксидов ванадия и марганца.

В предварительных опытах по разделению железа и титана из титаномагнетита в восстановительных (домна) и окислительных (конвертер) в печи Таммана было изучено распределение сопутствующих элементов ванадия, хрома, марганца и титана между чугуном и шлаком в зависимости от содержания углерода в металлической фазе. Результаты представлены на чертеже, из которого видно, что минимальные концентрации этих элементов в металле находятся в интервале содержания углерода 2,8-2,0%. Увеличение содержания углерода в металлической фазе приводит к повышению остаточных концентраций ванадия, хрома, марганца и титана.

Пример осуществления способа

Опыты проводили в металлургическом комплексе, оснащенном конвертерами емкостью 20 тонн.

Перед заливкой чугуна в конвертер загружали твердый высокомарганцовистый агломерат. Расход агломерата увеличивали от плавки к плавке, чтобы концентрация марганца и ванадия возрастала.

В конвертерах было проведено 6 плавок при деванадации ванадийсодержащего чугуна, состав которого по Mn регулировали агломератом, содержащим, мас.%: Feобщ. 25,58; FeO 15,30; CaO 4,80; MgO 1,91; SiO2 18,71; TiO2 2,27; Аl2O3 2,60; V2O5 0,83; Cr2O3 1,23; MnO 19,56; MnO2 211,97; P2O5 0,42; SO3 0,35; R2O 0,42. Основность 0,26.

В результате продувки плавок с расходом воздуха 30000-32000 м3/ч получили полупродукт с температурой 1385-1460°С, химический состав которого приведен в табл.1.

При этом за счет снижения вязкости ванадийсодержащих шлаков при повышении в них концентрации оксидов марганца с 11,7 до 26,4% и снижения концентрации вюстита (FeO) с 32,1 до 5,8%, содержание металловключений в шлаках сократилось с 23,0 до 3,2%, а выход годного полупродукта увеличился на 1,5-1,8% (табл.2).

Высокомарганцовистые ванадийсодержащие шлаки в конвертере получали в жидком состоянии. При сливе в шлаковые емкости эти шлаки практически не реагируют с попадающим полупродуктом и после кристаллизации содержат меньше дисперсного железа и металловключений.

После охлаждения шлаки выкантовывали на шлаковый двор, дробили до фракции менее 200 мм и отбирали пробу.

Полупродукт передавали в мартеновский цех для переработки на сталь.

Использование предлагаемой технологии по сравнению с известной позволит при сохранении всех преимуществ переработки ванадийсодержащих чугунов в конвертерах получать товарные ванадийсодержащие шлаки с заданными физико-химическими свойствами для переработки по различным технологиям, увеличить выход годного и повысить в шлаке концентрации оксидов ванадия и марганца.

Таблица 1 Показатели плавок при деванадации чугуна с использованием высокомарганцовистого агломерата Показатели Средние значения плавок текущего производства Номера опытных плавок 1 2 3 4 5 6 [C] чуг. 4,60 4,60 4,65 4,64 4,68 4,70 4,82 [V] чуг. 0,46 0,46 0,47 0,47 0,48 0,48 0,51 [Si] чуг. 0,28 0.28 0,29 0,28 0,28 0,29 0,30 [Ti] чуг. 0,23 0,23 0,24 0,23 0,23 0,24 0,25 [Mn] чуг. 0,35 0,35 0,33 0,35 0,34 0,35 0,36 [Cr] чуг. 0,22 0,22 0,24 0,23 0,23 0,24 0,26 [S] чуг. 0,023 0,023 0,024 0,025 0,024 0,025 0,026 [P] чуг. 0,056 0,056 0,055 0,056 0,055 0,056 0,058 Расход бессем. агл., кг/плавку. 1000 0 0 0 0 0 0 Расход марг. агл., кг/плавку 0 500 600 800 900 1000 1400 Расход воздуха, м3 30000 30000 30500 31000 31500 32000 32000 Длительность продувки, мин 3,0 3,0 3,2 3,4 3,8 4,0 4,2 [C] полупр. 3,2 3,2 3,0 2,8 2,6 2,4 2,0 [V] полупр. 0,04 0,04 0,05 0,06 0,08 0,10 0,09 [Si] полупр. 0,01 0,01 0,01 0,01 0,01 0,01 0,01 [Ti] полупр. 0,01 0,01 0,01 0,01 0,01 0,01 0,01 [Cr] полупр. 0,02 0,02 0,03 0,02 0,02 0,02 0,02 [Mn] полупр. 0,02 0,02 0,04 0,03 0,03 0,02 0,02 [S] полупр. 0,023 0,024 0,023 0,024 0,023 0,023 0,022 [P] полупр. 0,054 0,053 0,054 0,054 0,054 0,054 0,054 Температура полупр, °С 1360 1390 1400 1450 1450 1460 1460 FeO 32,1 28,3 25,7 19,3 15,4 10,3 5,8 V2O5 17,2 17,5 17,8 18,6 18,8 19,2 21,2 MnO 11,7 17,0 18,6 20,5 21,5 22,7 26,4 SiO2 18,4 21,9 22,5 24,3 25,2 27,1 27,2 CaO 1,6 4,0 4,2 4,4 4,3 4,4 4,6 Сr2O3 6,3 4,1 4,6 5,1 6,1 6,1 6,2 TiO2 10,0 7,1 7,8 8,5 9,6 10,5 10,6 Mn/V 0,68 1,32 1,45 1,52 1,58 1,64 1,72 Коэфф. ошлаков., % 95,2 96,7 94,2 91,6 86,1 82,1 78,3 Металл. вкл., % 23,0 15,0 12,0 8,0 5,3 3,4 3,2

Таблица 2 Зависимость выхода годного (железа) в полупродукт и массовой доли V2O5 от массовой доли MnO в конвертерном шлаке Параметры Показатели Содержание MnO в шлаке, % 11,7 17,0 18,6 20,5 21,5 22,7 26,4 Отношение Mn/V 0,68 1,32 1,45 1,52 1,58 1,64 1,72 Повышение выхода годного (Fe),% - 0,4 0,6 0,8 1,0 1,5 1,8 Повышение массовой доли V2O5 в шлаке, абс.% - 0,3 0,6 1,4 1,6 2,0 4,0

Похожие патенты RU2385349C2

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ НИЗКОКРЕМНИСТОГО ВАНАДИЙСОДЕРЖАЩЕГО МЕТАЛЛИЧЕСКОГО РАСПЛАВА 2014
  • Смирнов Леонид Андреевич
  • Ровнушкин Виктор Аркадьевич
  • Смирнов Андрей Леонидович
RU2566230C2
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ 2007
  • Киричков Анатолий Александрович
  • Козлов Владиллен Александрович
  • Кушнарев Алексей Владиславович
  • Кулик Вадим Михайлович
  • Петренев Владимир Вениаминович
  • Юрьев Алексей Борисович
RU2371483C2
АГЛОМЕРАТ ДЛЯ ОБРАБОТКИ ВАНАДИЙСОДЕРЖАЩЕГО ЧУГУНА В КОНВЕРТЕРЕ 2010
  • Сухарев Анатолий Григорьевич
  • Напольских Сергей Александрович
  • Гельбинг Раман Анатольевич
RU2434061C1
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 2008
  • Гильманов Марат Риматович
  • Киричков Анатолий Александрович
  • Мухатдинов Насибулла Хадиатович
  • Мухранов Николай Валентинович
  • Петренко Юрий Петрович
  • Фетисов Александр Архипович
  • Хамлов Юрий Николаевич
RU2416650C2
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ПРИ КОНВЕРТЕРНОМ ПЕРЕДЕЛЕ ПРИРОДНО-ЛЕГИРОВАННОГО ЧУГУНА 2010
  • Белокуров Андрей Дмитриевич
  • Данилин Юрий Анатольевич
  • Киричков Анатолий Александрович
  • Кушнарев Алексей Владиславович
  • Левчук Владимир Владимирович
  • Паньков Александр Александрович
  • Петренко Юрий Петрович
  • Фетисов Александр Архипович
  • Фомичев Максим Станиславович
RU2442827C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА 1998
  • Комратов Ю.С.
  • Смирнов Л.А.
  • Кузовков А.Я.
  • Демидов К.Н.
  • Ильин В.И.
  • Дерябин Ю.А.
  • Чернушевич А.В.
  • Кокареко О.Н.
  • Кузнецов С.И.
RU2140458C1
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВЫХ ЧУГУНОВ В СТАЛЕПЛАВИЛЬНЫХ АГРЕГАТАХ 1999
  • Кузовков А.Я.
  • Ильин В.И.
  • Лукьяненко А.А.
  • Данилин Ю.А.
  • Кабанов В.И.
  • Евдокимов А.В.
  • Кобелев В.А.
  • Чернушевич А.В.
RU2157414C1
СПОСОБ КОНВЕРТЕРНОЙ ПЛАВКИ С ИСПОЛЬЗОВАНИЕМ МЕТАЛЛИЗОВАННЫХ МАТЕРИАЛОВ 1998
  • Буявых С.П.
  • Ильин В.И.
  • Исупов Ю.Д.
  • Кривых В.А.
  • Кузнецов Е.В.
  • Кузовков А.Я.
  • Леушин В.Н.
  • Меламуд С.Г.
  • Огуречников А.П.
  • Ровнушкин В.А.
  • Смирнов Л.А.
  • Чернушевич А.В.
RU2145356C1
Способ конвертерного передела ванадиевого чугуна дуплекс-процессом 1986
  • Смирнов Леонид Андреевич
  • Василенко Геннадий Николаевич
  • Фрейденберг Анатолий Самуилович
  • Кокареко Олег Николаевич
  • Щекалев Юрий Степанович
  • Фугман Гарри Иванович
  • Корогодский Виталий Григорьевич
  • Третьяков Михаил Андреевич
  • Червяков Борис Дмитриевич
  • Кричевцов Евгений Алексеевич
SU1425213A1
ИЗВЕСТКОВО-ВАНАДИЕВЫЙ ШЛАК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1991
  • Криночкин Э.В.
  • Петренев В.В.
  • Киричков А.А.
  • Чернушевич А.В.
  • Жириков В.Н.
  • Литовский В.Я.
  • Третьяков М.А.
  • Комратов Ю.С.
  • Куклинский М.И.
  • Беловодченко А.И.
  • Ляпцев В.С.
  • Корогодский В.Г.
  • Мальцев Ю.Б.
  • Ватолин Н.А.
  • Осокин В.А.
  • Бородулин Е.К.
RU2023726C1

Иллюстрации к изобретению RU 2 385 349 C2

Реферат патента 2010 года СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ

Изобретение относится к черной металлургии, в частности к способу переработки полиметаллических чугунов с получением полупродукта и ванадийсодержащих шлаков. Способ включает загрузку охладителей и шлакообразующих материалов, заливку ванадийсодержащего чугуна в конвертер, продувку воздухом, обогащенным кислородом, выпуск полупродукта в ковш и выкантовывание шлака в шлаковую чашу. В качестве охладителя и шлакообразующего материала в конвертер вводят оборотный высокомарганцевый агломерат до содержания в расплавленном шлаке MnO более 20%, предпочтительно 25-27%, и поддерживают соотношение Mn:V в пределах 1,5-1,7. Деванадацию чугуна завершают при содержании углерода 2,0-2,8 в полупродукте при температуре выше 1400°С, предпочтительно 1450°С. Использование изобретения позволяет снизить содержание металлической фазы в конвертерном шлаке, повысить извлечение хромофоров из полупродукта в шлак и получить высокогомогенное смешение ванадия с реакционным агентом в шлаке. 1 ил., 2 табл.

Формула изобретения RU 2 385 349 C2

Способ переработки ванадийсодержащих чугунов в конвертере, включающий загрузку охладителей и шлакообразующих материалов, заливку ванадийсодержащего чугуна в конвертер, продувку воздухом, обогащенным кислородом, выпуск полупродукта в ковш и выкантовывание шлака в шлаковую чашу, отличающийся тем, что в качестве охладителя и шлакообразующего материала в конвертер вводят оборотный высокомарганцевый агломерат до содержания в расплавленном шлаке MnO более 20%, предпочтительно 25-27%, и поддерживают соотношение Mn:V в пределах 1,5-1,7, при этом деванадацию чугуна завершают при содержании углерода 2,0-2,8 в полупродукте при температуре выше 1400°С, предпочтительно 1450°С.

Документы, цитированные в отчете о поиске Патент 2010 года RU2385349C2

СПОСОБ ПРОИЗВОДСТВА ПРИРОДНО-ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ ПРИ ПЕРЕДЕЛЕ ВАНАДИЕВОГО ЧУГУНА В КИСЛОРОДНЫХ КОНВЕРТЕРАХ МОНОПРОЦЕССОМ С РАСХОДОМ МЕТАЛЛОЛОМА ДО 30% 1997
  • Александров Б.Л.
  • Аршанский М.И.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2105072C1
Способ передела ванадийсодержащих чугунов 1972
  • Окунев Аркадий Иванович
  • Шаврин Сергей Викторинович
  • Танутров Игорь Николаевич
  • Овчинников Геннадий Елизарович
  • Удовенко Виктор Григорьевич
  • Третьяков Михаил Андреевич
  • Петренев Владимир Вениаминович
  • Баранов Владимир Михайлович
  • Густомесов Арсений Владимирович
  • Губайдуллин Ирек Насырович
  • Решетников Николай Андреевич
  • Васин Александр Филиппович
  • Колпаков Лев Ефимович
SU503912A1
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА В КОНВЕРТЕРЕ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Одиноков С.Ф.
RU2136764C1
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА 1998
  • Комратов Ю.С.
  • Смирнов Л.А.
  • Кузовков А.Я.
  • Демидов К.Н.
  • Ильин В.И.
  • Дерябин Ю.А.
  • Чернушевич А.В.
  • Кокареко О.Н.
  • Кузнецов С.И.
RU2140458C1

RU 2 385 349 C2

Авторы

Козлов Владиллен Александрович

Карпов Анатолий Александрович

Петренев Владимир Вениаминович

Вдовин Виталий Викторович

Печенкина Анна Аверьяновна

Васин Евгений Александрович

Чесноков Юрий Анатольевич

Даты

2010-03-27Публикация

2008-05-21Подача