СПОСОБ ИЗГОТОВЛЕНИЯ НАГРЕВАТЕЛЬНЫХ ИЗЛУЧАЮЩИХ ПАНЕЛЕЙ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ НАГРЕВА Российский патент 1999 года по МПК H05B3/14 F24H3/04 

Описание патента на изобретение RU2141177C1

Изобретение относится к электротермии и может быть использовано для нагрева жилых и бытовых помещений за счет совмещения направленных потоков инфракрасного излучения и конвекционных потоков, а также в промышленных целях для сушки древесины, песка, зерна и для обогрева животноводческих и птицеводческих помещений.

Известно техническое решение, включающее способ изготовления электронагревателя (1).

Согласно известному техническому решению способ изготовления включает формирование электроизоляционных слоев, размещение между ними слоя электропроводного материала и связующего и соединение их под давлением.

Недостатком данного способа является то, что в нем для обогрева используется только конвекционный поток со слабым излучением и термодиффузионным прогревом за счет использования материала покрытия с малым коэффициентом излучения (значительно меньше 0.9), и, как следствие, получается относительно низкий КПД и малая скорость обогрева.

Известно также техническое решение - устройство для нагрева (2).

Известное устройство содержит плоский нагреватель, плоский отражатель с выпукло-криволинейным козырьком, дополнительный отражатель, установленный с противоположной стороны нагревателя.

Недостатком известного устройства является то, что он обладает малым коэффициентом излучения, вследствие чего происходит слабый прогрев между панелями и, соответственно, формируется слабый конвекционный поток.

Целью предлагаемого изобретения является создание экологически чистого нагревателя, обладающего относительно высоким коэффициентом полезного действия, коэффициентом излучения в пределах 0,4-0,9 и высокой скоростью обогрева.

Поставленная цель достигается тем, что способ изготовления инфракрасного излучателя, включающий размещение электропроводящего материала на электроизоляционной или металлической подложке, отличающийся тем, что предварительно отдельно подготавливают диэлектрическую или металлическую подложку (зачищают, промывают, обезжиривают, сушат и наносят токопроводящие шины) и токопроводящую композицию, полученную композицию фильтруют (для освобождения ее от крупных частиц наполнителя) и наносят ее на диэлектрическую или металлическую подложку с одной или обеих сторон известными методами (распыления, окунания и др.), осуществляют сушку для удаления растворителя при температуре (определяется типом пленкообразующего полимера и типом растворителя), при необходимости повторяют операции нанесения композиции на диэлектрическую или металлическую подложку и сушки несколько раз до достижения величины необходимого сопротивления полученного токопроводящего покрытия и заданного закона его удельного сопротивления между шинами по линиям, перпендикулярным и параллельным шинам, затем осуществляют механическую и электрическую защиту токопроводящего покрытия, проводя операции нанесения лака и сушки, при этом толщина защитной пленки лежит в пределах 3-5 мкм, а лак для защитного слоя готовят путем растворения пленкообразующего полимера в соответствующем растворителе.

Сечение панели теплонагревателя с вышеописанными слоями представлено на фиг. 1.

При изготовлении многослойного покрытия, изображенного на фиг. 1, удельная мощность тепловыделения находится в интервале 2.0 - 5.0 кВт/м2 при напряжении питании 100 - 250 В.

Кроме того, с целью увеличения удельных тепловых потоков и упрощения технологии нанесения нетокопроводящего покрытия наносят на диэлектрическую подложку металлическое покрытие методом вакуумно-плазменного напыления с последующим наращиванием этого слоя с использованием гальваники до заданной величины омического сопротивления этого металлического покрытия, затем на полученное металлическое покрытие наносят нетокопроводящую суспензию - композицию, содержащую нетокопроводящую сажу. При этом нетокопроводящее покрытие выполняет роль преобразователя теплового потока, исходящего от металлического покрытия, в инфракрасное излучение. В качестве металлического покрытия можно использовать медь, алюминий, нержавеющую сталь, никель и др. Сопротивление металлического покрытия подбирают таким, чтобы обеспечить удельную мощность тепловыделения в диапазоне 10-25 кВт/м2 при питающем напряжении 20 - 250 В.

Сечение панели теплонагревателя с вышеописанными слоями представлено на фиг. 2.

Многослойное покрытие, изображенное на фиг. 3, позволяет также получить мощность тепловыделения в интервале 2,0 - -5,0 кВт/м при напряжении питания, равном 100 - 250 В. Кроме того, данное покрытие имеет более высокий коэффициент теплопередачи по сравнению с покрытиями на фиг. 1 и фиг. 2. Применение металлической подложки упрощает и удешевляет технологию изготовления многослойного покрытия за счет исключения технологических операций, в частности гальваники.

Многослойное покрытие, изображенное на фиг. 4, позволяет получить мощность тепловыделения 1,0-1,5 кВт/м при напряжении питания, равном 1,5 - 20 В. Кроме того, данное покрытие обладает наиболее простой технологией изготовления и наибольшей тепловой отдачей за счет высокого коэффициента теплопередачи по сравнению с покрытием на фиг. 1 - фиг. 3.

Приготовление композиции токопроводящего покрытия включает следующие операции: растворяют пленкообразующий полимер в минимальном количестве растворителя, необходимого для растворения взятого количества полимера, путем перемешивания при комнатной температуре (при температуре t > tкомн. количество полимера соответственно уменьшается); добавляют токопроводящие наполнители, например сажу с графитом или без графита с дисперсностью в пределах 10 - 100 мкм и другие ингредиенты (термостабилизаторы, светостабилизаторы, антипирен и др.); полученную массу гомогенизируют либо механически с помощью каландров, краскотерок и др., либо акустически с помощью ультразвуковых колебаний, либо их сочетанием; полученную пасту либо используют для нанесения необходимого покрытия, либо осуществляют растворение ее для уменьшения вязкости путем перемешивания при t > tкомн. и скоростью n=60 - 1800 об/мин; полученную суспензию (лак) фильтруют через фильтр с величиной ячеек в пределах 50 - 100 мкм.

Приготовление 1 - 2% лака для нанесения защитного слоя осуществляют путем растворения пленкообразующего полимера в соответствующем растворителе.

Кроме того, с целью уменьшения затрат за счет исключения растворителя токопроводящий слоя наносят на диэлектрическую подложку методом электростатического напыления с последующим оплавлением. При этом диэлектрик должен обладать малой горючестью и повышенной термостойкостью. Также с целью увеличения теплобезопасности, увеличения скорости обогрева применяют принудительную регулируемую вентиляцию, используя вентилятор для эффективного съема тепла.

Диапазон температур панелей нагревателя определяется выбором типа диэлектрика, типа полимера, входящего в токопроводящий слой, его удельным сопротивлением, подводимым к нагревателю напряжением и геометрическими размерами нагревательных панелей, их формой и цветом.

В предлагаемом способе используются следующие режимы: диапазон подводимых питающих напряжений (переменного или постоянного тока) лежит в пределах 1.5 - 600 Вольт; диапазон температур нагревателя лежит в интервале +40oC - +250oC; максимальная длина волны инфракрасного излучения лежит в диапазоне 5,4 - 9,2 мкм.

Поставленная цель достигается также тем, что устройство, содержащее плоские нагреватель и отражатели, проставки для крепления нагревателя и отражателей, отличающееся тем что оно включает дополнительно корпус, нагревательные излучающие панели в количестве не менее одной, при этом излучающие панели установлены в корпусе с зазором Δ1 между ними, определяемым из выражения Δ1 =hп/k, где hп - высота нагревательных панелей находящегося в рабочем вертикальном положении нагревателя, a k -безразмерный коэффициент, величина которого лежит в интервале 15 - 30, отражательные панели, количество которых равно одной или двум, установленные внутри или снаружи корпуса также на расстоянии Δ1 от нагревательных панелей, при этом корпус выполнен в виде сетки либо из материала, слабо поглощающего инфракрасное излучение (не более 15% излучения), имеющий отверстия в верхнем и нижнем основании для прохождения конвективного потока, а проставки для крепления нагревательных и отражательных панелей к корпусу и нагревательных панелей между собой выполнены из изоляционных материалов, и контактные шины.

Выбор величины коэффициента k определяется из условия получения минимальных потерь конвекционного потока.

В данном нагревателе используется тепло, получаемое за счет инфракрасного излучения и конвекционного теплообмена.

Контактные шины, предпочтительно медные, либо наносятся на диэлектрическую поверхность нагревательных панелей до нанесения токопроводящего слоя, либо механически накладываются на токопроводящий слой в зависимости от условий эксплуатации нагревателя. При этом сопротивление шин выбирается из выражения
Rш = α•l/hп,
где α - коэффициент пропорциональности - находится в пределах 0,005 - 0,5, 1 - ширина панелей, hп - высота панелей.

На фиг. 5 представлен вид устройства сверху, а на фиг. 6 - вид устройства по А.

Устройство содержит корпус 1. Корпус покрывают полимером с целью защиты от коррозии и электроизоляции, а также с декоративной целью. Нагревательные панели 2, отражательные панели 3 с коэффициентом отражения 0,7-0,9 и термостойкостью не ниже +150oC. Вентилятор 4 для конвективного съема тепла. Изолирующие крепежные проставки 5, выполненные из фторопласта, керамики, асботекстолита и др. Токоподводящие провода 6. Контактные шины 7 для токоподвода питающего напряжения от 1,5 до 600 В с мощностью тепловыделения нагревательных панелей от 1.0 до 25 кВт/м2, опоры 8 для напольного варианта исполнения и отверстия 9 для настенного варианта.

Устройство работает следующим образом. После включения устройства в сеть питающего напряжения оно может работать в следующих режимах. Режим конвектора (режим I). При этом устройство содержит нагревательные панели 2 в количестве от 1 до 100 и две отражательные панели 3.

Режим инфракрасного (ИК) излучения (режим II). При этом устройство содержит нагревательные панели 2 в количестве 1 или 2, отражательные панели 3 либо отсутствуют, либо используется одна.

Режим комбинированный: конвекции и ИК-излучения (режим III). При этом устройство содержит нагревательные панели 2 в количестве от 3 до 100, отражательные панели 3 либо отсутствуют, либо используется одна.

В режимах I и III может быть использован вентилятор для усиления конвекции.

Нагреватель может быть установлен и работать как в вертикальном, так и в горизонтальном положении нагревательных и отражательных панелей и использован как в напольном, так и в настенном варианте.

Примеры реализации устройства и способа его изготовления.

Пример N 1. Реализация нагревателя, содержащего одну нагревательную панель и одну отражательную панель.

В качестве подложки для изготовления нагревательной панели берется стеклотекстолитовая пластина размером 400 мм х 400 мм и толщиной 0,5 мм на основе термореактивной кремнийорганической смолы с рабочей температурой +400oC. Обе поверхности этой пластины зачищаются, обезжириваются, промываются и сушатся. По краям пластины на каждой стороне ее наносятся медные шины шириной 10 мм и общим сопротивлением 0,10м. На шинах монтируются токопроводы.

Композиция для создания токопроводящего покрытия (на фиг. 1) получается с помощью следующих операций: растворения самозатухающего поликарбоната в метиленхлориде до концентрации, равной 5%; измельчения токопроводящей сажи просеиванием ее через сито с ячейками 50 мкм с введением в полученный 5% раствор поликарбоната; перемешивания с последующей фильтрацией.

Лак для создания защитного покрытия получается при растворении самозатухающего поликарбоната в метиленхлориде.

Полученную композицию наносят на поверхность пластины распылительными форсунками с последующей сушкой, в результате чего образуется токопроводящее покрытие.

Ha токопроводящее покрытие распылительными форсунками наносится лак для создания защитного слоя, который образуется после сушки.

Процентное содержание сажи в композиции составляет 30%.

Толщина токопроводящего покрытия и связанное с ним омическое сопротивление регулируются концентрацией раствора полиамида в композиции и, в данном примере, при полученном сопротивлении в 150 Ом обеспечивается мощность тепловыделения 320 Вт при напряжении 220 В.

Для изготовления отражательной панели берется аналогичная подложка, на которую наклеивается лист аллюминиевой фольги размером 400 мм х 400 мм и толщиной 250 мкм.

Затем нагревательная и отражательная панели крепятся в корпусе параллельно друг другу с ориентацией стороны с алюминиевой фольгой отражательной панели на нагревательную панель. Зазор между панелями равен 20 мм. К токоподводам нагревательных панелей крепятся токоподводящие провода.

Пример N 2. Реализация нагревателя, содержащего одну нагревательную панель и одну отражательную панель.

В качестве подложки используется лист фольги из нержавеющей стали размером 400 мм х 400 мм, толщиной 10 мкм, предварительно подготовленный для нанесения покрытия с помощью операций: зачистки, обезжиривания, промывки и сушки.

Затем готовится сухая композиция для образования покрытия согласно фиг. 4, преобразующего тепловой поток в излучение с использованием следующих операций: измельчения нетокопроводящей сажи, просеивания ее через сито с ячейками 50 мкм и последующим смешиванием с сополимером полиамида с температурой плавления +70oC и полидисперсностью в диапазоне 50 мкм - 70 мкм; гомогенизации полученной смеси при перемешивании.

Композиция наносится в электростатическом поле на поверхность пластины из фольги с помощью пневматического распыления с последующим оплавлением при температуре +240oC.

Процентное содержание сажи в композиции составляет 30%.

Мощность тепловыделения зависит от толщины фольги и в данном примере равна 350 Вт при напряжении 1,5 В.

На стороне поверхности пластины, свободной от покрытия, механическим способом накладываются токоподводящие шины. Затем на этой же стороне пластины наносится защитный слой тонкодисперсного сополимера полиамида толщиной 3 мкм, равной половине максимальной длины волны излучения, с последующим оплавлением при температуре +240oC.

Отражательная панель и компоновка нагревателя осуществляются аналогично изложенному в примере 1.

Источники информации, принятые во внимание.

1. Патент РФ N 2074521, H 05 B 3/28, опубл. БИ N 6 от 27.02.97 г.

2. Патент РФ N 2043700, H 05 В 3/00, F 24 H 3/04, опубл. БИ N 25 от 10.09.95 г.

Похожие патенты RU2141177C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ НАГРЕВАТЕЛЬНЫХ ИЗЛУЧАЮЩИХ ПАНЕЛЕЙ (ВАРИАНТЫ) 2001
  • Головенков А.В.
  • Козликов В.Л.
  • Маркевич М.А.
RU2183388C1
Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе 2016
  • Авишев Вячеслав Борисович
  • Антоненко Денис Геннадьевич
RU2653176C2
НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ ШИРОКОГО СПЕКТРА ПРИМЕНЕНИЯ 2018
  • Шелехов Игорь Юрьевич
RU2713729C1
СОСТАВ ДЛЯ ЭЛЕКТРОПРОВОДЯЩИХ ПОКРЫТИЙ И СПОСОБ ИЗГОТОВЛЕНИЯ ТВЕРДЫХ ЭЛЕКТРОПРОВОДЯЩИХ ПОКРЫТИЙ 2011
  • Поляков Виктор Владимирович
  • Поляков Андрей Викторович
  • Поляков Константин Викторович
  • Чертов Борис Георгиевич
  • Стреляев Сергей Иванович
RU2460750C1
СИСТЕМА ПОКРЫТИЙ, ОТРАЖАЮЩАЯ СОЛНЕЧНОЕ ИЗЛУЧЕНИЕ 2011
  • Эйбон Уильям Э.
  • Диллон Брайан
RU2548968C2
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ НА УГЛЕРОДНЫЕ ВОЛОКНА И ТКАНИ 2013
  • Панков Владимир Петрович
  • Жидков Владимир Евдокимович
  • Ковалев Вячеслав Данилович
  • Коломыцев Петр Тимофеевич
  • Панков Денис Владимирович
  • Баженов Анатолий Вячеславович
  • Соловьев Вячеслав Александрович
  • Скребцова Юлия Викторовна
  • Руднев Олег Леонидович
  • Шаталов Анатолий Иванович
RU2511146C1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕЗИСТИВНОГО НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА 1993
  • Бакланов Д.И.
  • Беляйков И.Н.
  • Вирник А.М.
  • Гаранов В.А.
  • Рощин Б.В.
  • Калачев А.А.
RU2066514C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРОНАГРЕВАТЕЛЯ (ВАРИАНТЫ) 2009
  • Панасюк Игорь Николаевич
  • Лукьянов Владимир Николаевич
  • Мантуров Юрий Васильевич
RU2394398C1
ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬ В ФОРМЕ ТЕЛА ВРАЩЕНИЯ 1992
  • Кургузов В.Н.
  • Цыганов К.И.
  • Власов П.В.
  • Козликов В.Л.
RU2025909C1
ОИК-ИНЕРТНЫЕ СУБСТРАТЫ, СОДЕРЖАЩИЕ БИС-ОКСОДИГИДРОИНДОЛИЛЕНБЕНЗОДИФУРАНОНЫ 2008
  • Рух Томас
  • Буньон Филипп
  • Браун Пол
  • Халль-Гулль Вероник
RU2500696C9

Иллюстрации к изобретению RU 2 141 177 C1

Реферат патента 1999 года СПОСОБ ИЗГОТОВЛЕНИЯ НАГРЕВАТЕЛЬНЫХ ИЗЛУЧАЮЩИХ ПАНЕЛЕЙ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ НАГРЕВА

Изобретение относится к электротермии и может быть использовано для нагрева жилых и бытовых помещений за счет совмещения направленных потоков инфракрасного излучения и конвекционных потоков, а также в промышленных целях для сушки древесины, песка, зерна и для обогрева животноводческих и птицеводческих помещений. Сущность изобретения состоит в том, что в способе изготовления инфракрасного излучателя, включающем размещение электропроводящего материала на подложке, в качестве подложки используют диэлектрическую или металлическую подложку, которую предварительно подготавливают и наносят на нее слои токопроводящего покрытия, защитного и т.д. при определенных условиях. Устройство для нагрева содержит выполненные заявленными способами излучатели, установленные определенным образом в корпусе, который также имеет определенное выполнение. Изобретение создает нагреватель с высоким КПД. 3 с. и 3 з.п.ф-лы, 6 ил.

Формула изобретения RU 2 141 177 C1

1. Способ изготовления нагревательных излучающих панелей, включающий размещение электропроводящего материала на подложке, отличающийся тем, что в качестве подложки используют диэлектрическую подложку, которую предварительно подготавливают - зачищают, промывают, обезжиривают, сушат и наносят на нее токопроводящие шины, готовят композицию для токопроводящего покрытия, включающую пленкообразующий полимер с соответствующим наполнителем, которую наносят на диэлектрическую подложку методом электростатического напыления с последующим оплавлением с одной или обеих сторон, после чего при необходимости повторяют операции нанесения композиции на диэлектрическую подложку до достижения величины необходимого сопротивления полученного токопроводящего покрытия и заданного закона его удельного сопротивления между шинами по линиям, перпендикулярным и параллельным шинам, затем осуществляют механическую и электрическую защиту токопроводящего покрытия, проводя операции нанесения лака и его сушки, при этом толщина защитной пленки лежит в пределах 3 - 5 мкм, а лак для защитного слоя готовят путем растворения пленкообразующего полимера в соответствующем растворителе. 2. Способ по п.1, отличающийся тем, что в композицию для токопроводящего покрытия вводят растворитель, после чего ее фильтруют и наносят на диэлектрическую подложку с одной или обеих сторон, затем полученное покрытие сушат при температуре, определяемой типом пленкообразующего полимера и растворителя. 3. Способ по п.1, отличающийся тем, что после предварительной подготовки на подложку наносят металлическое покрытие методом вакуумно-плазменного напыления, наращивают его с использованием гальваники до заданной величины омического сопротивления этого металлического покрытия, наносят нетокопроводящую суспензию-композицию, содержащую нетокопроводящую сажу. 4. Способ изготовления нагревательных излучающих панелей, включающий размещение электропроводящего материала на подложке, отличающийся тем, что в качестве электропроводящего материала используют металлическую подложку, которую предварительно подготавливают - зачищают, промывают, обезжиривают и сушат, затем готовят сухую композицию, состоящую из измельченной нетокопроводящей сажи и сополимера полиамида с полидисперсностью в диапазоне 50 - 70 мкм, гомогенизируют и наносят эту композицию в электростатическом поле на металлическую подложку с помощью пневматического распылителя с последующим оплавлением, затем на стороне металлической подложки, свободной от покрытия, механическим способом накладывают токопроводящие шины и на этой же стороне подложки наносят защитный слой тонкодисперсного сополимера полиамида с последующим его оплавлением. 5. Устройство для нагрева, содержащее плоский нагреватель и плоские отражатели, проставки для крепления нагревателя и отражателей, отличающееся тем, что оно содержит корпус, выполненный предпочтительно в виде сетки, либо из материала, слабо поглощающего инфракрасное излучение, имеющий отверстия в верхнем и нижнем основаниях, при этом плоский нагреватель выполнен в виде нагревательных излучающих панелей в количестве не менее одной, которые установлены в корпусе с зазором между ними, определяемым из выражения: Δ1= hn/K, где hn - высота нагревательных панелей находящегося в рабочем вертикальном положении нагревателя, а К - безразмерный коэффициент, величина которого лежит в интервале 15 - 30, отражательные панели, количество которых равно одной или двум, установленные также на расстоянии Δ1 от нагревательных панелей, а проставки для крепления нагревательных и отражательных панелей к корпусу и нагревательных панелей между собой выполнены из изоляционных материалов. 6. Устройство по п.5, отличающееся тем, что оно дополнительно содержит вентилятор.

Документы, цитированные в отчете о поиске Патент 1999 года RU2141177C1

ЭЛЕКТРОНАГРЕВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1994
  • Чевордаев Валентин Михайлович
RU2074521C1
УСТРОЙСТВО ДЛЯ НАГРЕВА 1992
  • Булдаков В.П.
  • Офицерьян Р.В.
  • Безукладов В.И.
  • Орлов В.Я.
  • Шумаев С.В.
RU2043700C1
ЭЛЕКТРОКОНВЕКТОР 1993
  • Бармин В.П.
  • Елисеев В.Г.
  • Зарайский Г.П.
  • Саламатов И.А.
  • Крутоверцев И.Т.
RU2037275C1
Способ дегазации угольного пласта 1987
  • Хакимжанов Темирхан Едрисович
  • Сванбаев Гылым Тулегенович
SU1583636A1
US 4073970 A, 14.02.78
US 4990747 A, 05.02.91
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО НАГРЕВАТЕЛЯ 1991
  • Богатыренко Ю.А.
  • Соколов В.А.
  • Бабак С.П.
  • Петухов А.В.
  • Тимченко Г.С.
RU2006185C1

RU 2 141 177 C1

Авторы

Козликов В.Л.

Астахов П.А.

Чичерин В.Г.

Даты

1999-11-10Публикация

1998-07-24Подача