Изобретение относится к области аналитической химии, а именно к способам потенциометрического определения концентрации веществ в водно-органических системах и может быть использовано в качестве лабораторного или дистанционного метода контроля за концентрацией веществ в экстракционных или других технологических процессах.
Известны способы потенциометрического определения различных веществ с использованием ионоселективных мембран. В этих способах измеряют мембранный потенциал, который алгебраически складывается из скачков потенциала на поверхностях мембраны (и паразитного внутри мембраны), характерных для равновесного состояния водный раствор - поверхность мембраны [1]. Измерение проводят, используя в качестве внутреннего электрода любой электрод с устойчивым потенциалом. В качестве второго электрода используется стандартный электрод, например, хлорсеребряный. Концентрацию определяют по градуировочному графику: потенциал ионоселективного электрода (или ЭДС ячейки) - концентрация определяемого компонента. Ионоселективные электроды практически невозможно использовать в растворах экстракционных систем из-за присутствия органических веществ, которые, адсорбируясь на поверхности мембраны, отравляют электрод. Кроме того, область определения концентрации веществ значительно ниже используемых в экстракционных системах.
Известен также способ потенциометрического определения концентрации веществ в водных и органических растворах, который заключается в том, что определение проводят в растворах экстракционных систем и измеряют скачок потенциала внутри органической фазы (в мембране), осуществляя токоотвод через контактирующие с ней водные фазы, одна из которых является стандартным, а другая - испытуемым раствором, и определяют концентрацию так же по градуировочному графику в координатах "скачок потенциала - концентрация испытуемого раствора" [2].
По технической сущности наиболее близким является способ по [2]. Он и взят в качестве прототипа.
Недостатком известного способа является то, что в нем предполагается использование стандартных электродов с известным потенциалом, например, хлорсеребряных. Их использование в радиохимических процессах в аппаратах, работающих под давлением, является очень сложной технической задачей - нестабильность потенциала, утечка радиоактивных растворов, сложность технического обслуживания.
Задачей изобретения является разработка способа потенциометрического определения концентрации веществ в растворах экстракционных систем, в котором не используются стандартные электроды.
Поставленная задача решается тем, что в способе потенциометрического определения концентрации веществ в растворах экстракционных систем, включающем измерение ЭДС электролитической ячейки: первый электрод - стандартный водный раствор - органическая фаза - испытуемый водный раствор - второй электрод, определение концентрации по градуировочному графику в координатах "скачок потенциала - концентрация испытуемого раствора", дополнительно измеряют ЭДС электролитической ячейки: первый электрод - стандартный водный раствор - испытуемый водный раствор - второй электрод, скачок потенциала находят как разность этих ЭДС, а в качестве электродов используют электроды из нержавеющей стали.
Таким образом, для определения скачка потенциала в органической фазе используется электрод с разрывной мембраной. Разность ЭДС электрода с мембраной и без мембраны исключает скачки потенциалов электродов, выполняющих функцию токоотвода, и соответствует скачку потенциала непосредственно в мембране. Скачки потенциалов электродов, выполняющих функцию токоотвода, в этом случае могут иметь любое значение (не стандартизированное), более того, могут изменяться во времени. Это позволяет использовать электроды из нержавеющей стали.
На фиг. 1 изображена установка для определения концентрации веществ; на фиг. 2 - график зависимости скачка потенциала от концентрации испытуемого раствора, полученный на установке фиг. 1.
Пример. Определение концентрации азотной кислоты на установке, изображенной на фиг. 1.
Установка имеет стакан 1, а также сосуд 2 с размещенным в нем электродом 3 и электрод 4 (электроды из нержавеющей стали). Сосуд 2 через хлорвиниловую трубку 5 зажимом Мора 6 соединен с капилляром 7. Капилляр 7 может перемещаться по вертикали. Электроды 3 и 4 соединены с pH метром 8.
В стакане 1 находятся две фазы, содержащие азотную кислоту - водная 9 (испытуемый раствор, т.е. тот, концентрацию которого определяют) и органическая 10 (30% трибутилфосфат в разбавителе РЖ-3), равновесная водной 9.
В сосуде 2 находится стандартный раствор азотной кислоты. Через капилляр 7 осуществляют подачу раствора из сосуда 2 в органическую фазу, регулируя скорость подачи раствора зажимом 6. Для подавления диффузионного потенциала на границе соприкосновения водных растворов с разной концентрацией веществ стандартный раствор должен иметь концентрацию веществ более 0,5 моль/л. В описываемой установке в качестве стандартного раствора использовалась азотная кислота 4 моль/л. Определение скачка потенциала проводят измерением двух ЭДС электролитической ячейки в различных позициях капилляра 7 (позиция 1 - в органической фазе, позиция 2 - в испытуемом растворе). Первая и вторая ЭДС представляют собой сумму скачков потенциалов, возникающих на границах раздела фаз или растворов с разной концентрацией веществ. Первую ЭДС измеряют в ячейке: электрод 3 - стандартный водный раствор (сосуд 2) - органическая фаза 10 - испытуемый водный раствор 9 - электрод 4 (позиция 1 капилляра 7, фиг. 1).
Вторую ЭДС измеряют в ячейке: электрод 3 - стандартный водный раствор (сосуд 2) - испытуемый водный раствор 9 - электрод 4 (позиция 2 капилляра 7, фиг.1).
Скачок потенциала в органической фазе находят как разность первой и второй ЭДС.
Для достижения максимального сигнала время жизни капли (перемешивание приграничной зоны) должно составлять 0,2-0,5 с. Определение проводят при комнатной температуре.
Время установления потенциала < 1 с. Погрешность определения ±0,1 моль/л.
Строят градуировочный график (фиг.2) в координатах "скачок потенциала Δϕ - концентрация испытуемого раствора CHNO3", для чего в качестве испытуемого раствора (водной фазы 9) берут водные растворы азотной кислоты известных концентраций.
Измеряя скачок потенциала в органической фазе, равновесной с испытуемым раствором (водной фазой 9) неизвестной концентрации, по построенному градуировочному графику определяют концентрацию испытуемого раствора.
Аналогичным образом можно определить концентрацию других веществ, экстрагирующихся в органический раствор ТБФ в разбавителе, например, неодима и урана.
Реализация способа может быть осуществлена другими методами. Например, вместо перемещения капилляра 7 из позиции 1 в позицию 2, осуществляют подачу через капилляр 7 раствора струей, которая пробивает органический слой и осуществляет контакт с испытуемым раствором 9.
Список литературы
1. Никольский Б.П., Матерова Е.А. Ионоселективные электроды. -Л.: Химия, 1980, -240 с., ил., с. 8-17.
2. Заявка на выдачу патента РФ на изобретение N 95116229 от 19.09.95, патент N 2092829, опубл. 10.10.97, прототип.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВЕЩЕСТВ | 1995 |
|
RU2092829C1 |
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВЕЩЕСТВ | 1999 |
|
RU2152610C1 |
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НЕЙТРАЛЬНЫХ ФОСФОРОРГАНИЧЕСКИХ ЭКСТРАГЕНТОВ В УГЛЕВОДОРОДНЫХ РАЗБАВИТЕЛЯХ | 1999 |
|
RU2184959C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СЛОЯ ОРГАНИЧЕСКОГО РАСТВОРА, НАХОДЯЩЕГОСЯ СОВМЕСТНО С ВОДНЫМ РАСТВОРОМ | 1994 |
|
RU2090880C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДОННАНОВСКОГО ПОТЕНЦИАЛА | 2008 |
|
RU2364859C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФТОРИД-ИОНОВ В ВОДЕ (ВАРИАНТЫ) | 2006 |
|
RU2331873C1 |
Состав мембраны ионоселективного электрода для определения ионов цезия | 1983 |
|
SU1124215A1 |
СПОСОБ ОДНОВРЕМЕННОЙ ОЦЕНКИ ПОТЕНЦИАЛА ДОННАНА В ВОСЬМИ ЭЛЕКТРОМЕМБРАННЫХ СИСТЕМАХ | 2015 |
|
RU2617347C2 |
Состав мембраны ионоселективного электрода для определения активности ионов палладия в цианидных растворах | 1982 |
|
SU1092403A1 |
Состав мембраны ионоселективного электрода для определения активности перренат-ионов (его варианты) | 1981 |
|
SU1045103A1 |
Изобретение относится к области аналитической химии, а именно к способам количественного определения веществ в водно-органических системах, и может быть использовано в качестве лабораторного или дистанционного метода контроля за концентрацией веществ в экстракционных или других технологических процессах. Для определения скачка потенциала в органической фазе используется электрод с разрывной мембраной. Разность ЭДС электрода с мембраной и без мембраны исключает скачки потенциалов вспомогательных электродов и соответствует скачку потенциала непосредственно в мембране. Скачки потенциалов вспомогательных электродов в этом случае могут иметь любое значение (не стандартизированное), более того могут изменяться во времени. Техническим результатом является возможность использования в качестве вспомогательных электродов электроды из нержавеющей стали. 2 ил.
Способ потенциометрического определения концентрации веществ в растворах экстракционных систем, включающий измерение ЭДС электролитической ячейки: первый электрод - стандартный водный раствор - органическая фаза - испытуемый водный раствор - второй электрод и определение концентрации по градуировочному графику в координатах "скачок потенциала - концентрация испытуемого раствора", отличающийся тем, что дополнительно измеряют ЭДС электролитической ячейки: первый электрод - стандартный водный раствор - испытуемый водный раствор - второй электрод, скачок потенциала находят, как разность этих ЭДС, а в качестве электродов используют электроды из нержавеющей стали.
СПОСОБ ПОТЕНЦИОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВЕЩЕСТВ | 1995 |
|
RU2092829C1 |
Никольский Б.П | |||
и др | |||
Ионоселективные электроды | |||
- Л.: Химия, 1980, с | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
Титриметрический способ определения 1- @ 4-[ @ -(2,4-дитретамилфенокси)-бутироиламино]-фенил @ -3-N-морфолино-4-(1-фенилтетразолилтио-5)-пиразолон-5,(Н-599) | 1988 |
|
SU1649408A1 |
DE 4437727 A1, 04.07.96. |
Авторы
Даты
1999-11-20—Публикация
1997-12-11—Подача