Изобретение относится к медицинской технике.
Одним из методов хирургического лечения внутренних болезней является частичное или полное замещение функций заболевшего органа посредством трансплантации аналогов этого органа. В качестве таких аналогов используют трансплантаты в виде суспензий клеток соответствующих органов, изготовленных по известным технологиям. Разработаны способы и технические средства лечения таких болезней как сахарный диабет, иммунодифицитное состояние, заболевания сердца, печени, поджелудочной железы, костного мозга и др. Основную задачу при разработке и использовании трансплантатов составляет подавление иммунной реакции организма против чужеродных клеток и реакции этих клеток против организма. Одним из известных решений этой задачи является использование фармакологических средств - иммунодепрессантов. Действие их не продолжительное, чем объясняется низкая эффективность лечения, высокая послеоперационная летальность. Недостатками также являются дефицит донорских органов в условиях краткосрочности их действия, высокая стоимость операций.
Более эффективна защита трансплантированных клеток помещением их в иммуноизолированные вместилища различного конструктивного оформления. В общем они представляют собой замкнутый объем (сосуд), ограниченный перфорированными стенками. При размере просвета перфораций порядка 0,3 мкм через такую стенку свободно осуществляется обмен веществ и исключается проникновение иммунных клеток, имеющих большие размеры.
Известны устройства для хирургического лечения заболеваний внутренних органов, содержащие клеточную суспензию и вместилище в виде отдельных полимерных полупроницаемых оболочек каждой клетки. Поры оболочек имеют размер просвета не более 0,3 мкм.
Недостатком устройства является малый срок службы вследствие зарастания пор и инкапсуляции устройства грубой соединительной тканью с последующей биодеградацией.
Известно устройство для хирургического лечения заболеваний внутренних органов (1), содержащее клеточную суспензию, помещенную во вместилище в виде металлического контейнера с перфорированными стенками. Размер перфораций составляет порядка 0,3 мкм. Недостаток этого устройства заключается в малом сроке службы вследствие зарастания отверстий и инкапсуляции устройства грубой соединительной тканью.
Изобретение решает задачу увеличения срока службы имплантата. Технический результат состоит в обеспечении биосовместимости имплантата с окружающими тканями.
Указанный технический результат достигается тем, что в устройстве для хирургического лечения заболеваний внутренних органов, содержащем иммуноизолированное вместилище и помещенную в него клеточную суспензию, вместилище выполнено из пористого проницаемого никелида титана, сформированного в виде сплошного объема.
Предпочтительна структура пористости с преобладанием пор размером 0,3 - 0,5 мкм. Предпочтительна уплощенная форма вместилища. Предпочтительная сферическая форма вместилища.
По принципу действия предлагаемый имплантат сходен с упомянутыми аналогами. Изготовленную по специальной технологии клеточную суспензию, соответствующую заболевшему органу, помещают во вместилище из пористого никелида титана (пропитывают последний клеточной суспензией) и имплантируют в тело больного. После периода адаптации клетки начинают действовать, замещая частично или полностью функцию заболевшего органа и создавая возможность его лечения. При этом через поры вместилища осуществляется диффузия метаболитов, и не проникают иммунные клетки, поскольку их размеры превышают размеры пор.
Достижимость технического результата обусловлена высокой биомеханической совместимостью никелида титана, вследствие чего выполненные из него устройства не капсулируются, и диффузионная способность вместилища сохраняется длительное время.
Более того, эффективность работы устройства увеличивается со временем, т. к. пористая структура вместилища прорастает сосудами и пассивная диффузия метаболитов дополняется активным синтезом и экскрекцией веществ, присущим "родным" органам в естественных условиях.
При наличии пор с размерами просвета, превышающими 0,5 мкм, создается возможность проникновения иммунных клеток, т.е. сокращения срока службы трансплантированных клеток и, следовательно, всего устройства. Поэтому для увеличения срока службы устройства предпочтителен выбор материала с преобладанием пор в указанном интервале 0,3 - 0,5 мкм. Устройство имплантируют в анатомически и физиологически показанные места организма. Удобным местом является брыжейка кишечника - орган листовой геометрии. Поэтому предпочтительна уплощенная форма вместилища.
Во всех прочих случаях наиболее рациональной по соотношению объема и площади поверхности является сферическая форма вместилища.
Достижимость технического результата подтверждена конкретными примерами испытаний предлагаемого изобретения на подопытных животных.
Пример 1. Лечение сахарного диабета.
Испытание устройства проводилось в 1996-97 гг. на мышах серии C 57 BL/6. Использовано устройство, подготовленное и имплантированное по следующей методике:
1. В стерильных условиях производят забор поджелудочной железы у неонатальных поросят после внутрибрюшинного введения оксибутирата натрия 20%, 2 мл (3). Общий желчный проток пережимают у места впадения в 12-перстную кишку, перерезают аорту и нижнюю полую вену. В общий желчный проток вводят раствор Хэнкса с температурой 4oC с содержанием коллагеназы "SERNA" активности 150 ед/мг.
Набухшую поджелудочную железу удаляют и помещают на водяную баню при 37oC на 40 мин. После переваривания добавляют раствор Хэнкса при 4oC, энергично встряхивают ткань, фильтруют через сито с отверстиями диаметром 0,6 - 0,8 мкм, трижды отмывают раствором Хэнкса при центрифугировании 100 у, 10 с. Взвесь ткани центрифугируют в 4-х ступенчатом градиенте плотности Фиккола: 1,078, 1,070, 1,060, 1,045. С границы между двумя средними слоями собирают островки Лангенгарса, отмывают от Фиккола с центрифугированием 100 у, 10 с раствором Хэнкса (2 раза) и физиологическим раствором (1 раз). Полученные островки последовательно помещают в 0,02% раствор ЭДТА 15 мин при комнатной температуре, в 0,25% раствор трипсина при 4oC на 15 мин и аккуратно пипетируют до превращения островков Лангенгарса в однородную клеточную суспензию. После отмывания клеток раствором РПМИ с добавлением 10% телячьей сыворотки производят подсчет жизнеспособных клеток с помощью камеры Горяева и трипанового синего. Удовлетворительным считают содержание живых клеток не менее 90%.
2. В объеме вместилища из проницаемо-пористого никелида титана с преимущественным размером пор 0,3 - 0,5 мкм культивируют клеточную культуру после пропитывания объема вместилища клеточной суспензией в течении 48 часов.
Под общим эфирным обезболиванием группе мышей (10 особей) производят лапаротомию и осуществляют свободную трансплантацию устройства в брюшную полость.
Сахарный диабет у мышей вызывают аллоксаном в дозе 15 мг/кг. Для сопоставительного анализа работы предлагаемого устройства в эксперимент введены дополнительно 2 контрольные группы мышей по 10 особей.
Мыши первой контрольной группы получали инсулин по общепринятой методике, второй контрольной группе имплантированы диффузионные камеры (устройство-прототип).
3. Результаты испытаний.
Контроль сахара в крови мышей осуществляется прибором "One Touch" фирмы "Jonson & Jonson". Через 1 год в первой контрольной группе осталось в живых 3 мыши, во второй - 5. В основной группе в живых осталось 8 мышей. Причина смерти во всех случаях - развитие вторичных осложнений (диабетическая ангиопатия, нефропатия). Падеж животных в первой контрольной группе начался через месяц после начала лечения, во второй группе через месяц начались явления отторжения имплантатов и падеж животных через 3 месяца.
В основной группе через 7,5 месяцев погибло 2 мыши от нефропатии. После выведения мышей из эксперимента морфологически и гистологически выявлена тонкая соединительная ткань на поверхности устройства с просвечивающимися кровеносными сосудами. Обнаружены функционально активные островки Лангенгарса, свидетельствующие о работоспособности устройства.
По аналогичной методике с использованием соответствующих клеточных культур проведены испытания предлагаемого устройства при лечении печеночной недостаточности, иммунодифицитных состояний, при пересадке костного мозга.
название | год | авторы | номер документа |
---|---|---|---|
НОСИТЕЛЬ КЛЕТОЧНЫХ КУЛЬТУР ИСКУССТВЕННЫХ ВНУТРЕННИХ ОРГАНОВ | 2000 |
|
RU2191607C2 |
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ НОСИТЕЛЯ КЛЕТОЧНЫХ СТРУКТУР | 1999 |
|
RU2170645C2 |
ИМПЛАНТАТ-НОСИТЕЛЬ ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ ВНУТРЕННИХ ОРГАНОВ | 2005 |
|
RU2300345C2 |
СПОСОБ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ПОВЕРХНОСТНЫХ РАНЕНИЙ СЕЛЕЗЕНКИ | 2007 |
|
RU2337632C1 |
СПОСОБ ЛЕЧЕНИЯ ОНКОЗАБОЛЕВАНИЙ | 2004 |
|
RU2285548C2 |
МАТЕРИАЛ ДЛЯ ПЛАСТИЧЕСКИХ ОПЕРАЦИЙ | 2003 |
|
RU2257230C2 |
ИМПЛАНТАТ ДЛЯ ПЛАСТИЧЕСКИХ ОПЕРАЦИЙ | 2005 |
|
RU2291715C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПОРИСТОГО НИКЕЛИДА ТИТАНА | 2007 |
|
RU2356966C2 |
ПРОНИЦАЕМЫЙ ИНКУБАТОР ИЗ НИКЕЛИДА ТИТАНА | 2016 |
|
RU2638819C1 |
МАТЕРИАЛ ДЛЯ ПЛАСТИКИ ТКАНЕЙ | 1997 |
|
RU2137441C1 |
Изобретение используется в хирургии для замещения больного органа или его части. Имплантат содержит клеточную суспензию, помещенную в иммуноизолированное вместилище, выполненное в виде сплошного объема сферической или уплощенной формы из пористого никелида титана с поперечным размером пор, не превышающим 0,5 мкм. Через поры вместилища осуществляется обмен веществ клеточной суспензии, соответствующей заболевшему органу, и не проникают иммунные клетки, поскольку их размеры превышают размеры пор. Благодаря высокой биомеханической совместимости увеличен срок службы имплантата по сравнению с известными аналогами. 3 з.п. ф-лы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Immunosuppression, macroencapsulation and ultraviolet-Birradiation asimmunoprotection in porcine parcreatic islet xenotransplantation-Pharmacol Toxicol, 1995, Jun/ 2 | |||
US 4597765 A, 01.07.86 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
US 5383929 A, 24.01.95 | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
RU 2055544 C1, 10.03.96. |
Авторы
Даты
2000-01-10—Публикация
1997-11-12—Подача