Изобретение относится к технологии электрохимических производств, в частности к электролизу водных растворов сульфатов металлов.
Известен способ электролиза водных растворов сульфатов металлов, например сульфата меди, /Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. М. : Металлургия, 1977. С. 94/, при осуществлении которого на катоде выделяется медь, а раствор обогащается серной кислотой по суммарной реакции
CuSO4 + H2O + 2F = Cu + 1/2O2 + H2SO4.
Недостатком указанного процесса является образование в качестве побочного продукта кислорода, выделение которого протекает при высоком анодном потенциале. Кроме того, при электролизе графитовый анод окисляется кислородом и разрушается.
Наиболее близким к изобретению является способ электролиза водных растворов сульфатов металлов путем подачи диоксида серы в раствор электролита. /А. с. N 332041, C 01 B 17/74, B 01 K 1/00. Опубл. 14.03.72 г. Бюл. N 10/, согласно которому анод предварительно активизируют платиной, палладием, серебром или активированным углем, которые вводят в тело анода в количестве 0,00001-0,01% от веса анода.
Недостатками данного способа являются использование дорогостоящих металлов: платины, палладия и серебра для активизации графитового анода. Так как электролиз проводится при низких давлениях диоксида серы, возникает необходимость его улавливания после электролиза для повторного использования.
Задача предлагаемого изобретения - получение металлов и серной кислоты при низких энергозатратах. Технический результат - увеличение выхода по току продуктов реакции, экономичность.
Указанный технический результат достигается тем, что процесс проводят при повышенном давлении (0,30 МПа) диоксида серы на любых устойчивых электродных материалах, например, в качестве анода можно использовать графит, а в качестве катода - медную пластину.
Особенность проведения процесса в том, что под давлением растворимость диоксида серы увеличивается, снимаются диффузионные ограничения подачи анионов к поверхности электрода, а за счет окисления диоксида серы при повышенных давлениях можно получить серную кислоту, которую используют для восстановления медной руды.
Пример конкретного выполнения
Пример 1. Электрохимической переработке подвергают раствор сульфата меди концентрацией 0,5 моль/л (80 г/л), насыщенный диоксидом серы при давлении 0,30 МПа. Электролиз проводят в бездиафрагменном электролизере объемом 130 мл, помещенном в титановый автоклав. В качестве анода используется графит, катодом служит медная пластинка. Насыщение раствора сернистым газом продолжают до установления равновесия
SO2 (раствор) ⇄ SO2 (газ).
При этом давление равно P = 0,30 МПа. Процесс проводят при температуре исходного электролита 18oC, анодной плотности тока 500 А/м2, катодной плотности тока 250 А/м2. Выход по току меди 97,80%. Концентрация кислоты после электролиза составляет 2,75 г/л, это количество кислоты соответствует выходу по току 195,8%, что объясняется образованием серной кислоты в растворе как за счет восстановления ионов меди, так и за счет окисления диоксида серы.
Пример 2. Электрохимической переработке подвергают раствор, содержащий 200 г/л сульфата кобальта, насыщенный диоксидом серы при давлении 0,30 МПа.
Электролиз проводят в бездиафрагменном электролизере объемом 130 мл, помещенном в титановый автоклав. В качестве анода используется графит, катодом служит пластинка из нержавеющей стали. Насыщение раствора сернистым газом продолжают до установления равновесия
SO2 (раствор) ⇄ SO2 (газ).
При этом давление равно P = 0,30 МПа. Процесс проводят при температуре электролита 20oC, анодной плотности тока 500 А/м2, катодной плотности тока 300 А/м2. Выход по току кобальта 96,2%. Концентрация серной кислоты после электролиза составляет 2,7 г/л, что соответствует выходу по току 192,4%. Это объясняется образованием серной кислоты в растворе как за счет восстановления ионов кобальта, так и за счет окисления диоксида серы.
Пример 3. Электролизу подвергают раствор сульфата кадмия концентрацией 160 г/л, насыщенный диоксидом серы при давлении 0,30 МПа. Электролиз проводят в бездиафрагменном электролизере объемом 130 мл, помещенном в титановый автоклав. В качестве анода используется графит, в качестве катода алюминий. Насыщение раствора сернистым газом продолжают до установления равновесия
SO2 (раствор) ⇄ SO2 (газ).
При этом давление равно P = 0,30 МПа. Процесс проводят при температуре 20oC, анодной плотности тока 500 А/м2, катодной плотности тока 100 А/м2. Выход по току кадмия 93,8. Концентрация кислоты после электролиза 2,63 г/л (выход по току 187,6%) что объясняется образованием серной кислоты в растворе как за счет восстановления ионов кадмия, так и за счет окисления диоксида серы.
Пример 4. Электрохимической переработке подвергают раствор, содержащий 120 г/л сульфата цинка и 40 г/л серной кислоты, насыщенный диоксидом серы при давлении 0,30 МПа. Электролиз проводят в бездиафрагменном электролизере объемом 130 мл, помещенном в титановый автоклав. В качестве анода используется графит, в качестве катода цинк. Насыщение раствора сернистым газом продолжают до установления равновесия
SO2 (раствор) ⇄ SO2 (газ).
При этом давление равно P = 0,30 МПа. Процесс проводят при температуре электролита 20oC, анодной плотности тока 500 А/м2, катодной плотности тока 350 А/м2. Выход по току цинка 94,3%. Выход по току кислоты 188,7%, что объясняется образованием серной кислоты в растворе за счет восстановления ионов цинка и за счет окисления диоксида серы.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения.
Преимущества заявленного способа заключаются в том, что:
1) повышается выход по току продуктов реакции за счет увеличения растворимости SO2;
2) экономичность и доступность осуществляется за счет применения любых устойчивых в данной среде электродных материалов;
3) на базе указанного способа можно разработать безотходную технологию за счет того, что окислением диоксида серы под давлением можно получить концентрированную серную кислоту для восстановления медной руды.
Таким образом, изложенные сведения свидетельствуют о том, что заявленный способ предназначен для использования в области электрохимических производств.
Для заявленного способа в том, как он охарактеризован в независимом пункте изложенной формулы изобретения, подтверждена возможность его осуществления с помощью описанной в заявке методики.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИТИОНИТА НАТРИЯ | 1998 |
|
RU2146221C1 |
СПОСОБ ОЧИСТКИ ФЕНОЛСОДЕРЖАЩИХ ВОД | 1999 |
|
RU2162822C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРНОЙ КИСЛОТЫ | 1994 |
|
RU2086706C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРЛИГНИНА | 1996 |
|
RU2109849C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЛЮКОНОВОЙ КИСЛОТЫ | 2003 |
|
RU2240307C1 |
СПОСОБ ПОЛУЧЕНИЯ ОСНОВНОГО КАРБОНАТА СВИНЦА | 2010 |
|
RU2418103C1 |
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ КРАСИТЕЛЕЙ | 2006 |
|
RU2331590C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 1995 |
|
RU2089670C1 |
СПОСОБ ЭЛЕКТРОКОАГУЛЯЦИОННОЙ ОЧИСТКИ ФЕНОЛСОДЕРЖАЩИХ ВОД | 2001 |
|
RU2198848C1 |
СПОСОБ ФОТОЭЛЕКТРОХИМИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ КРАСИТЕЛЕЙ | 2006 |
|
RU2337885C2 |
Изобретение относится к технологии электрохимических производств. Электрохимической переработке подвергают раствор сульфатов металлов, насыщенный диоксидом серы при избыточном давлении в 0,3 МПа. На графитовом аноде при электролизе окисляются продукты гидролиза диоксида серы с образованием серной кислоты. На катоде выделяется металл. Анодный потенциал смещается в область менее положительных потенциалов, чем потенциал выделения кислорода. Технический результат - увеличение выхода по току продуктов реакции при низких энергозатратах.
Способ электролиза водных растворов сульфатов металлов, включающий проведение процесса электролиза на графитовом аноде при растворе, насыщенном диоксидом серы, отличающийся тем, что процесс проводят при избыточном давлении диоксида серы в 0,30 МПа.
SU 332041 A 14.03.1972 | |||
СПОСОБ ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ | 0 |
|
SU289821A1 |
Способ получения серной кислоты | 1976 |
|
SU652238A1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ИЗВЛЕЧЕНИЯ МЕДИ ИЗ СЕРНОКИСЛЫХ ВОДНЫХ РАСТВОРОВ | 1992 |
|
RU2033481C1 |
US 4030989 A1 21.06.1977. |
Авторы
Даты
2000-02-27—Публикация
1998-10-14—Подача