Изобретение относится к области химической и нефтехимической промышленности, а именно к производству никелевых катализаторов на алюмооксидных носителях, и может быть использовано в процессах гидрирования ароматических углеводородов.
Известен способ получения никелевого катализатора путем пропитки носителя (Al2O2 определенной формы и пористой структуры) водными растворами солей никеля с последующей прокалкой и восстановлением в токе водорода (Сеттерфилд Ч. Практический курс гетерогенного катализа. - М.: Мир, 1984, с. 185). Процесс в присутствии такого катализатора ведут при температурах 150-200oC и давлении около 3 МПа.
Основным недостатком данного способа является использование в качестве носителя низкотемпературных форм оксида алюминия (бемит, псевдобемит, γ-Al2O3 и др. ), что позволяет получать катализатор определенной пористой структуры, но одновременно снижает его механическую прочность.
Более близким к изобретению по технической сущности является способ получения, основанный на механическом смешении компонентов в присутствии жидкой фазы. В частности, способ получения катализатора, содержащего 50% NiO (39,3% Ni), путем смешения основного карбоната никеля с алюмооксидным носителем (смесь α-Al2O3 и γ-Al2O3 при соотношении 0,05:0,95) в присутствии пептизатора - водного раствора аммиака, с последующей сушкой при 100-120oC и прокалкой при 300-500oC, измельчением, смешением с графитом и таблетированием (RU, патент, 2102145, кл. В 01 J 37/04, 1998).
Перед проведением процесса гидрирования катализатор активируют в токе водорода при 200oC в течение 6 часов. В присутствии данного катализатора конверсия ароматического углеводорода (бензола) составляет 70% при давлении 1,0 МПа, скорости подачи водорода - 15 л/ч и объемной скорости подачи сырья - 3 ч-1.
Тем не менее никелевый катализатор, получаемый по данному способу, обладает недостаточной активностью и требует применения высокого давления водорода.
В основу изобретения поставлена задача увеличить активность никелевого катализатора гидрирования при меньшем давлении в системе, исключить стадию предварительного активирования катализатора, а также повысить его механическую прочность.
Сущность изобретения заключается в получении никелевого катализатора гидрирования нанесением металлического никеля на порошок алюмооксидного носителя (α-Al2O3), путем химического восстановления из раствора, содержащего соль никеля, восстановитель и комплексообразователь, с последующей промывкой в воде и сушкой при температуре 120-150oC и получением пористых структур в виде пластинок путем плазменного напыления на инертные подложки.
Способ получения катализатора осуществляется следующим образом.
Расчет количества исходного порошка носителя (α-Al2O3) в зависимости от заданного содержания никеля в катализаторе проводится по формуле:
G NiCl2 6H2O - содержание хлорида никеля в растворе (г/л);
V - объем раствора;
n - количество регенераций;
(% Ni) - заданное процентное содержание никеля в готовом катализаторе.
В раствор, содержащий 48 г/л хлорида никеля и 70 г/л цитрата натрия (комплексообразователь), всыпают 220 г/л порошка оксида алюминия, тщательно перемешивают и оставляют на 5-6 часов при температуре 20-25oC. Данная операция обеспечивает активирование порошка носителя перед покрытием его никелем. Затем добавляют 200 мл/л гидразин гидрата (восстановитель) и при постоянном перемешивании, добавляя гидроксид натрия, доводят pH раствора до значения 13-14 и поддерживают ее постоянной. Постепенно нагревают раствор до температуры 70-80oC. Проверяют цвет раствора с помощью стеклянной трубочки. При обесцвечивании раствор регенерируют, вводя в него сухую соль хлорида никеля (48 г/л). Количество регенераций определяется заданным содержанием никеля в катализаторе.
По окончании процесса полученный порошок тщательно промывают сначала 6-7 раз водопроводной водой, затем 1-2 раза дистиллированной. Сушат при температуре 120-150oC.
С помощью плазменной установки получают пористые плазменные структуры в виде пластинок. Режим плазменного напыления выбирают с учетом получения максимальной пористости структуры при достаточной механической прочности.
Каталитические свойства полученных образцов никелевых катализаторов исследовали в реакции гидрирования ароматических углеводородов (толуола) на микропилотной установке проточного типа при давлении - 0,25 МПа, скорости подачи водорода - 18 л/ч и объемной скорости подачи сырья - 0,5 ч-1. Результаты каталитических испытаний образцов с различным содержанием никеля представлены в таблице.
Как видно из данных, представленных в таблице, никелевый катализатор, полученный предлагаемым способом, при температуре 150oC и низком давлении (0,25 МПа) обеспечивает полную конверсию толуола при меньшем, по сравнению с прототипом, содержании никеля (22%). Использование в качестве носителя α-Al2O3 и плазменного метода формирования структуры катализатора позволяет повысить его механическую прочность.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРИГОТОВЛЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА ДЛЯ ГИДРИРОВАНИЯ НЕПРЕДЕЛЬНЫХ И АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 1995 |
|
RU2080178C1 |
НИКЕЛЕВЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ НЕНАСЫЩЕННЫХ УГЛЕВОДОРОДОВ И СЕРООЧИСТКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ | 2013 |
|
RU2531624C1 |
КАТАЛИЗАТОР ДЛЯ ГИДРИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1997 |
|
RU2131769C1 |
КАТАЛИЗАТОР ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2008 |
|
RU2386476C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ УГЛЕВОДОРОДСОДЕРЖАЩИХ ГАЗОВ | 2000 |
|
RU2175264C1 |
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ | 1996 |
|
RU2102145C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА РЕАКЦИЙ ГИДРОГЕНИЗАЦИИ | 2015 |
|
RU2604093C1 |
СПОСОБ ЛАЗЕРНО-ГАЗОТЕРМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЯ | 1999 |
|
RU2165997C2 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА МЕТАНИРОВАНИЯ УГЛЕКИСЛОТЫ НА ОСНОВЕ БИМЕТАЛЛИЧЕСКОГО НИТРИДА NiMoN | 2013 |
|
RU2535990C1 |
КАТАЛИЗАТОР СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ АЦЕТИЛЕНОВЫХ И ДИЕНОВЫХ УГЛЕВОДОРОДОВ В С-С-УГЛЕВОДОРОДНЫХ ФРАКЦИЯХ | 2014 |
|
RU2547258C1 |
Описывается способ получения никелевого катализатора гидрирования ароматических углеводородов, включающий нанесение никеля на порошкообразный алюмооксидный носитель с последующим формированием гранулированного катализатора, отличающийся тем, что в качестве алюмооксидного носителя используют α-Al2O3, нанесение металлического никеля осуществляют путем химического восстановления из раствора, содержащего соль никеля, восстановитель и комплексообразователь, с последующей промывкой в воде и сушкой при температуре 120-150°С, формирование гранул катализатора в виде пористых пластинок осуществляют путем плазменного напыления на инертные подложки. Технический результат - увеличение активности никелевого катализатора гидрирования при меньшем давлении в системе, исключение стадии предварительного активирования катализатора, а также повышение его механической прочности. 1 табл.
Способ получения никелевого катализатора гидрирования ароматических углеводородов, включающий нанесение никеля на порошкообразный алюмооксидный носитель с последующим формированием гранулированного катализатора, отличающийся тем, что в качестве алюмооксидного носителя используют α-Al2O3, нанесение металлического никеля осуществляют путем химического восстановления из раствора, содержащего соль никеля, восстановитель и комплексообразователь, с последующей промывкой в воде и сушкой при температуре 120 - 150oС, формирование гранул катализатора в виде пористых пластинок осуществляют путем плазменного напыления на инертные подложки.
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ | 1996 |
|
RU2102145C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ НИКЕЛЕВЫХ КАТАЛИЗАТОРОВ | 0 |
|
SU272283A1 |
ЭЛЕКТРОМЕГАФОН | 0 |
|
SU354612A1 |
Рабочий орган для уборки ягод с вертикальных шпалер | 1976 |
|
SU619143A1 |
US 4956328 A, 11.09.1990. |
Авторы
Даты
2000-04-27—Публикация
1999-02-01—Подача