ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА Российский патент 2000 года по МПК C21C5/54 C21C5/06 C22B9/10 

Описание патента на изобретение RU2148089C1

Изобретение относится к специальной электрометаллургии, а именно к электрошлаковому переплаву металлов, который может быть использован для обработки инструментальных сталей.

Наибольшее распространение получил электрошлаковый переплав с целью глубокой десульфурации, рафинирования металла от неметаллических включений и получения плотной литой структуры. Для достижения этих целей разработан ряд флюсов на базе систем фторида кальция с термодинамически прочными оксидами кальция, алюминия и магния. Эти флюсы характеризуются высокой рафинирующей способностью и обладают комплексом физических и физико-химических свойств, обеспечивающих устойчивый режим переплава (см. книгу "Электрометаллургия стали и ферросплавов" под ред. Д.Я. Поволоцкого. Изд.2, переработ. и доп. - М.: Металлургия, 1984. - 568 с.).

Однако для получения таких флюсов требуется дефицитный плавиковый шпат - минерал фторида кальция, как в известном флюсе для электрошлакового переплава, компоненты которого взяты в следующем соотношении, вес.%:
окись кальция - 10-15
окись магния - 10-15
оксид алюминия - 12-20
оксид кремния - 2-7
фтористый кальций - остальное
При таком содержании фтористого кальция во флюсе при повышенной рафинирующей способности в процессе переплава из шлакового расплава в атмосферу выделяются фтористые соединения, отрицательно влияющие на человеческий организм и живую природу (см. а.с. СССР N 258332, кл. C 22 B 9/10, C 21 C 5/56, C 21 C 5/52).

Известен флюс для электрошлакового переплава, компоненты которого взяты в следующем соотношении, мас.%:
фторид кальция - 30-50
оксид кальция - 12-18
оксид алюминия - 12-18
оксид магния - 3-7
оксид кремния - 5-9
оксид титана - 3-7
оксид хрома - 3-5
бура - 6-12
Флюс такого состава обладает теми же недостатками, что и вышеупомянутый, хотя и обладает высокой рафинирующей способностью (см. а.с. СССР N1765191, кл. C 21 C 5/54).

В настоящее время разработаны экономичные и эффективные способы получения стали с низким содержанием серы, фосфора, кислорода и водорода. В связи с этим отпадает необходимость рафинирования металла от примесей при электрошлаковом переплаве, а первостепенной задачей переплава становится получение благоприятной структуры при сохранении низкого содержания водорода и повышение технико-экономических показаний процесса. Решить поставленные задачи позволяет использование флюсов низкой основности. Дефицит плавикового шпата CaF2 (фторида кальция) остро ставит задачу разработки флюсов с минимально возможным содержанием фторида кальция.

Известен сварочный флюс АН - 60, содержащий компоненты в следующем соотношении, мас.%:
оксид кремния - 42,5-46,5
оксид кальция - 3-10
оксид марганца - 36-41
фторид кальция - 5-8
оксид алюминия - до 5
оксид магния - 0,5-3,0
Высокое содержание оксида кремния при низком содержании оксида и фторида кальция, а также оксида магния обеспечивает низкую водородопроницаемость флюса. Флюс обладает удовлетворительным комплексом физических и физико-химических свойств, удовлетворяющим требованиям процесса электрошлакового переплава, однако высокое содержание в нем термодинамически непрочного оксида марганца придает ему высокую окислительную способность, что делает невозможным его использование для переплава легированной стали (см. ГОСТ 9087-81. Флюсы сварочные плавленные. Технические условия).

При производстве сварочных флюсов, в качестве компонентов используют оксид кальция, оксид алюминия, магнетитовый порошок и плавиковый шпат (см. книгу "Теория и технология производства ферросплавов" /Гасик М.И., Лакишев Н.П., Емлин Б.И. - М.: Металлургия, 1988. - 784 с.).

Наиболее близким по технической сущности к предлагаемому флюсу является флюс, содержащий компоненты в следующем соотношении, мас.%:
оксид кремния - 35-40
оксид кальция - 26-38
оксид магния - 12-20
оксид алюминия - 4-8
фторид кальция - 5-20
Этот флюс при температуре электрошлакового переплава обладает удовлетворительным комплексом физических и физико-химических свойств, обеспечивает достаточно устойчивый электрический режим переплава и позволяет переплавлять легированную сталь без существенного изменения ее состава. Недостатком сварочного флюса является относительно высокое содержание в нем фторида кальция, а также повышенная водородопроницаемость его расплава (см. а. с. СССР N 91422, кл. B 23 K 35/36).

Оксид для производства флюсов электрошлакового переплава получают в результате обжига известняка в шахтных или вращающихся печах, причем используют только свежеобожженную известь. Ее высокая стоимость определяется не только затратами на обжиг, но и затратами, связанными с созданием специальных условий ее транспортировки и хранения.

Высокая стоимость оксида алюминия обусловлена дорогостоящей схемой его получения, включающей производство из бокситов агломерата, который затем переплавляют в рудовосстановительной печи с целью производства электрокорунда и дробления порошка оксида алюминия.

Оксид магния является продуктом обжига во вращающихся печах дефицитного минерала магнезита. Высокая стоимость магнезитового порошка обусловлена также сложной и энергозатратной схемой получения и необходимостью создания специальных мер хранения и транспортировки.

Задачей изобретения является снижение стоимости флюса при уменьшении расхода плавикового шпата (фторида кальция).

Сущность изобретения заключается в том, что в известном флюсе для электрошлакового переплава, содержащем оксид кальция, оксид алюминия, оксид кремния, фторид кальция и оксид магния, некоторые компоненты, а именно: оксид кальция, оксид кремния, оксид алюминия и частично оксид магния введены в виде регенерированного доменного шлака, полученного десульфурацией доменного шлака в эмульсионном (конвертерном) и струйнокапельном режимах, а компоненты взяты в следующем соотношении, мас.%:
регенерированный доменный шлак - 75-80
оксид магния - 15-20
фторид кальция - 4-5
При этом шлак содержит в своем составе, мас.%:
оксид кремния - 40-45
оксид кальция - 40-42
оксид алюминия - 10-12
оксид магния - 8-9
сера - менее 0,2
Введение в состав флюса регенерированного доменного шлака в пределах 75 - 80% обеспечит наличие в нем требуемого содержания следующих компонентов, мас.%:
оксид кальция - 30-36
оксид алюминия - 6-10
оксид кремния - 30-38
оксид магния - до 30
Оксида кальция во флюсе должно быть в пределах 30 - 36%. Если во флюсе оксида кальция будет менее 30%, то повышается вязкость и снижается электропроводность расплава. При содержании во флюсе оксида кальция более 36%, возрастает основность шлака и увеличивается его водородопроницаемость.

Оксида кремния во флюсе должно быть в пределах 30 - 38%. При этом обеспечивается низкая водородопроницаемость шлакового расплава, высокая производительность процесса и снижается расход электроэнергии. При содержании оксида кремния менее 30% существенно снижается омическое сопротивление флюса и ухудшаются технико-экономические показатели процесса. Кроме того, вследствие повышения основности возрастает водородопроницаемость флюса за счет роста свободных (не связанных в комплексы) ионов кислорода. При содержании оксида кремния выше 38% резко повышается вязкость флюса и значительно снижается электропроводность, что затрудняет проведение процесса электрошлакового переплава.

Оксида магния во флюсе должно быть в пределах 22 - 27%. При содержании оксида магния менее 22% наблюдается ухудшение поверхности слитка, появляются гофры и пережимы. При содержании оксида магния более 27% резко возрастает температура плавления флюса, что затрудняет проведение процесса электрошлакового переплава. Он идет в неустойчивом режиме, что приводит к формированию грубых поверхностных дефектов слитка.

Оксида алюминия во флюсе должно быть в пределах 6 - 10%. Если оксида алюминия во флюсе будет содержаться меньше или больше указанных пределов, то произойдет нарушение близкого к эвтектическому соотношения между основными компонентами флюса системы оксидов кремния, кальция, алюминия, магния, и температура плавления значительно повысится.

Фторида кальция во флюсе должно быть в пределах 4-5%. Присутствие в предлагаемом флюсе фторида кальция менее 4% не обеспечивает необходимой жидкопроводности шлака. При содержании фторида кальция более 5% уменьшается производительность процесса вследствие возрастания электропроводности расплава. Кроме того, фторид кальция является дорогим и дефицитным материалом. Увеличение его содержания приводит к увеличению стоимости флюса.

В исходном состоянии флюс предложенного состава может быть изготовлен в виде смеси гранулированного (дробленого) регенерированного доменного шлака, порошков обожженного магнезита, используемого для ремонта ванн сталеплавильных агрегатов, и плавикового шпата.

Таким образом, предложенный состав флюса для электрошлакового переплава позволяет решить задачу снижения его стоимости за счет исключения компонентов, требующих дорогостоящих технологий их подготовки, а также использования дорогих компонентов в минимальных количествах.

В таблице приведены результаты опробования составов предлагаемого флюса, которые были получены при проведении опытных плавок на установке ЭШП A-550 с неподвижным кристаллизатором диаметром 100 мм.

Исходные компоненты флюса взвешивали, а затем расплавляли во флюсоплавильной печи или непосредственно в кристаллизаторе установки электрошлакового переплава.

Переплавляли электроды диаметром 60 мм из стали 45Х. Переплав при токе 680 - 720 А и напряжении 30-40 В. Выплавляли слитки массой 30 кг. Во время переплава контролировали технологические параметры процесса, расход электроэнергии. Качество поверхности слитков оценивали визуально. Вязкость расплавов определяли в специальных экспериментах при помощи вибрационного вискозиметра, электропроводность - по схеме вольтметр - амперметр. Результаты определений приведены в таблице в соответствии с вариантами количественных составов предлагаемого флюса и вариантами состава прототипа.

Варианты 1 и 5 соответствуют запредельным содержаниям регенерированного доменного шлака, варианты 2 и 4 - граничным, вариант 3 - среднему содержанию.

Варианты 6 и 10 соответствуют запредельным содержаниям оксида магния, варианты 7 и 9 - граничным, вариант 8 - среднему содержанию.

Варианты 11 и 14 соответствуют запредельным содержаниям фторида кальция, варианты 12 и 13 - граничным.

Варианты 15 и 16 соответствуют различным составам флюса по прототипу.

Полученные результаты свидетельствуют о том, что при содержании во флюсе регенерированного доменного шлака менее 75% процесс электрошлакового переплава протекает неустойчиво с малой скоростью и большим расходом электроэнергии, а при содержании во флюсе регенерированного доменного шлака более 80% показатели процесса ухудшаются из-за снижения электропроводности и увеличения вязкости жидкого шлака. При содержании оксида магния менее 15% процесс идет в неустойчивом режиме из-за сравнительно низкой электропроводности флюса. Увеличение содержания оксида магния до 21% приводит к ухудшению показателей процесса - падает скорость переплава, увеличивается расход электроэнергии из-за повышения температуры плавления шлака. При содержании во флюсе фторида кальция менее 4% ухудшается качество поверхности слитка из-за высокой вязкости слитка, а при содержании фторида кальция более 5% снижается скорость переплава.

При использовании для переплава флюса по прототипу варианта 15 процесс идет в неустойчивом режиме с получением слитка с плохой поверхностью, а при переплаве под флюсом по прототипу варианта 16 переплав проходит достаточно устойчиво, получена удовлетворительная поверхность слитка, однако процесс характеризуется низкой скоростью переплава и высоким расходом электроэнергии.

Экономичность (невысокая стоимость) предложенного флюса по сравнению с широко применяемыми достигается за счет использования вместо оксидов кальция, алюминия и кремния дешевого регенерированного доменного шлака, малого содержания фторида кальция и уменьшения расхода электроэнергии при электрошлаковом переплаве.

Изобретение практически не требует затрат на внедрение.

Похожие патенты RU2148089C1

название год авторы номер документа
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2011
  • Мальков Николай Васильевич
  • Рощин Антон Васильевич
  • Рощин Василий Ефимович
RU2487173C1
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2015
  • Вдовин Константин Николаевич
  • Сычь Любовь Григорьевна
  • Дерябин Данил Андреевич
  • Карамельщиков Михаил Анатольевич
RU2605019C1
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 1988
  • Рощин В.Е.
  • Мальков Н.В.
  • Супруненко В.В.
  • Сулацков В.И.
  • Кондратьев А.С.
  • Захаров М.М.
  • Соловьев А.В.
  • Гайнуллин А.А.
  • Королев Л.Г.
  • Медведев А.А.
SU1621521A1
СПОСОБ ДЕСУЛЬФУРАЦИИ ШЛАКА 1999
  • Вдовин К.Н.
  • Чернов В.П.
  • Колокольцев В.М.
  • Рощин В.Е.
RU2164954C1
СПОСОБ ВЫПЛАВКИ ПОЛЫХ СЛИТКОВ ТИТАН- И БОРСОДЕРЖАЩИХ МАРОК СТАЛИ МЕТОДОМ ЭШП 2009
  • Павлова Наталья Петровна
  • Демидов Владимир Александрович
  • Половинкин Валерий Николаевич
RU2423536C1
Флюс для электрошлакового переплава 1989
  • Анисимов Валерий Иванович
  • Манаков Анатолий Иванович
  • Рыбинцев Владимир Алексеевич
  • Карпов Олег Степанович
SU1765191A1
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ СПЛОШНЫХ И ПОЛЫХ СЛИТКОВ ИЗ БОРСОДЕРЖАЩИХ СТАЛЕЙ 2017
  • Левков Леонид Яковлевич
  • Шурыгин Дмитрий Александрович
  • Киссельман Михаил Анатольевич
  • Орлов Сергей Витальевич
  • Дуб Владимир Семенович
  • Волобуев Олег Сергеевич
  • Каширина Жания Казбековна
  • Ульянов Михаил Васильевич
  • Иванов Иван Алексеевич
  • Петин Михаил Михайлович
  • Клочай Виктор Владимирович
  • Гарченко Александр Александрович
  • Самбурский Павел Гаврилович
RU2656910C1
ФЛЮС ДЛЯ РАЗЖИЖЕНИЯ ШЛАКА 2007
  • Ильин Валерий Иванович
RU2345142C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛЫХ СЛИТКОВ МЕТОДОМ ЭШП 2007
  • Павлова Наталья Петровна
  • Демидов Владимир Александрович
  • Половинкин Валерий Николаевич
RU2363743C2
Способ получения нержавеющей стали 1982
  • Бородин Дмитрий Иванович
  • Мирошниченко Вячеслав Иванович
  • Беляков Николай Александрович
  • Быстров Сергей Иванович
  • Губин Алексей Васильевич
  • Тюрин Евгений Илларионович
  • Чернов Владимир Александрович
  • Архипов Валентин Михайлович
  • Катаев Владимир Михайлович
SU1092189A1

Иллюстрации к изобретению RU 2 148 089 C1

Реферат патента 2000 года ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА

Изобретение относится к специальной электрометаллургии, а именно к электрошлаковому переплаву металлов, которое может быть использовано для обработки инструментальных сталей. Предлагаемый флюс содержит часть компонентов, а именно: оксиды кальция, алюминия и кремния и частично оксид магния введены в его состав в виде регенерированного доменного шлака, полученного десульфурацией доменного шлака в эмульсионном и струйно-капельном режимах, а компоненты взяты в следующем соотношении, мас.%: регенерированный доменный шлак 75-80, оксид магния 15-20, фторид кальция 4-5, при этом шлак содержит в своем составе, мас.%: оксид кремния 40-45, оксид кальция 40-42, оксид алюминия 10-12, оксид магния 8-9, сера менее 0,2. Введение в состав флюса регенерированного доменного шлака позволяет избавиться от дорогостоящих технологий отдельного приготовления каждого из входящих в шлак компонентов. Кроме того, исключается необходимость в затратах, связанных с созданием условий транспортировки и хранения приготовленных отдельно компонентов флюса. Уменьшение в составе флюса фторида кальция из-за его дороговизны и дефицита до пределов, обеспечивающих нормальное протекание процесса электрошлакового переплава, а именно обеспечение необходимых жидкоподвижности шлака и электропроводности расплава также ведет к уменьшению стоимости флюса. Дополнительным эффектом от уменьшенного расхода фторида кальция является уменьшение выделения в атмосферу фтористых соединений. 1 табл.

Формула изобретения RU 2 148 089 C1

Флюс для электрошлакового переплава, содержащий оксид кальция, оксид алюминия, оксид кремния, фторид кальция и оксид магния, отличающийся тем, что оксид кальция, оксид алюминия, оксид кремния и частично оксид магния введены в виде регенерированного доменного шлака, полученного десульфурацией доменного шлака в эмульсионном и струйно-капельном режимах, а компоненты взяты в следующем соотношении, мас.%:
Регенерированный доменный шлак - 75 - 80
Оксид магния - 15 - 20
Фторид кальция - 4 - 5
при этом шлак содержит в своем составе, мас.%:
Оксид кремния - 40 - 45
Оксид кальция - 40 - 42
Оксид алюминия - 10 - 12
Оксид магния - 8 - 9
Сера - Менее 0,2

Документы, цитированные в отчете о поиске Патент 2000 года RU2148089C1

Флюсы для автоматической сварки высоколегированной нержавеющей стали 1948
  • Любавский К.В.
  • Пашуканис Ф.И.
SU91422A1
Флюс для электрошлакового переплава 1989
  • Анисимов Валерий Иванович
  • Манаков Анатолий Иванович
  • Рыбинцев Владимир Алексеевич
  • Карпов Олег Степанович
SU1765191A1
SU 1290709 А, 30.07.94
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 1980
  • Поволоцкий Д.Я.
  • Рощин В.Е.
  • Королев Л.Т.
  • Никитина И.В.
  • Косматенко И.Е.
  • Рогов А.М.
  • Мирошкин А.Ф.
  • Сулацков В.И.
SU1026443A1
SU 258332 А, 30.08.80
Электрометаллургия стали и ферросплавов./ Под редакцией Д.Я.Поволоцкого
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
- М.: Металлургия, 1984, с.483 - 485
Гасик М.И., Лякишев Н.П., Емлин Б.И
Теория и технология производства ферросплавов
- М.: Металлургия, 1988, с.657 - 659.

RU 2 148 089 C1

Авторы

Колокольцев В.М.

Анцупов В.П.

Морозов А.А.

Вдовин К.Н.

Чернов В.П.

Носов С.К.

Даты

2000-04-27Публикация

1998-09-16Подача