Изобретение относится к определенным аморфным металлическим сплавам и к способу их получения. Более конкретно оно относится к производству аморфных металлических сплавов из загрязненных побочных продуктов процесса производства элементарного фосфора в электрической печи (прежде такие побочные продукты имели небольшое коммерческое значение).
Производство аморфных металлических сплавов в данной области хорошо известно и описано, например, в патенте США N 3856513, опубликованном 24 декабря 1974 г. , и в переиздании 32.925, опубликованном 19 мая 1989 г., оба из них выданы на имя Хо-Су Чена и Дональда Е. Полка. В этих патентах описан способ производства аморфных сплавов формулы MaYbZc, где М представляет переходный металл, например, Fe, Ni, Cr, Co, V или их смеси; Y является металлоидом, например P, B или C, или их смесями, и Z является элементом из группы Al, Si, Sn, Sb, Ge, In, Be или их смесями; "a" может составлять 60-90 ат.%, "b" может составлять 10-30 ат.% и "c" - 0.1-15 ат.%.
Эти и другие известные аморфные сплавы получают путем очень быстрого охлаждения жидкого металлического сплава со скоростью 10oC/с с целью поддержания некристаллической структуры жидкого сплава при его затвердевании. В сущности расплавленная жидкость резко охлаждается до температуры ниже температуры стеклования с образованием переохлажденного стекла, имеющего свойства застывшей жидкости, что позволяет сохранить аморфную природу жидкого сплава без превращения его в кристаллизованное тело.
Одной из методик осуществления такого быстрого охлаждения является заливка непрерывного потока расплавленного металла на движущуюся охлажденную поверхность, обычно металлическую, например вращающийся металлический круг, вальцы или ленту. Охлажденная металлическая поверхность обладает высокой скоростью теплоотдачи и может закаливать жидкий металлический сплав, придавая ему аморфное твердое состояние. Для того, чтобы получить высокую скорость охлаждения, расплавленный металл следует распределить по охлажденной поверхности в виде очень тонкой пленки, что позволит обеспечить закаливание всей пленки. В большинстве случаев аморфный металл получают в виде очень тонкой узкой ленты толщиной несколько милов (несколько тысячных дюйма) и шириной от двух до десяти дюймов (от 5,08 до 25,4 см). Точно такую же методику применяли для получения тонких проволочных нитей аморфных металлических сплавов.
Физические и электрические свойства таких аморфных узких лент или проволок описывают как очень хорошие по сравнению с их кристаллическими дубликатами. Многие аморфные узкие ленты имеют, например, очень незначительный остаточный магнетизм, что позволяет их использовать в качестве сердечников для трансформаторов, которые можно легко намагничивать и размагничивать при применении очень слабого электрического поля. Многие ленты имеют высокий предел прочности на растяжение и высокую стойкость к коррозии в воде, солях и вулканизованных серой соединениях, обычно связанных с резиновыми изделиями. Это делает их идеальными для использования в шинах и для усиления каучуковых изделий, например шлангов и приводных ремней. Высокая прочность и стойкость к коррозии делают их также пригодными для других применений, включающих бетонные композиционные материалы, например напряженный бетон, кабель, пружины и другие несущие нагрузку изделия.
Они имеют также достаточную пластичность для того, чтобы их можно было изгибать, придавая им форму кривых линий и дуг без изломов. Это свойство является желательным, когда их используют для упрочнения сборных строительных элементов путем включения в элемент ленты аморфного сплава вокруг каждой кривой линии и крутки сборной детали.
Другое применение таких пластичных аморфных металлов состоит в использовании их при получении безопасных бритвенных лезвий. Пластичность обеспечивает изготовление из них очень тонких листов, толщина которых составляет 0.001 дюйма (0.00254 см), которые обладают другими желательными свойствами, например высокой твердостью, высоким пределом упругости и высокой коррозионной стойкостью. Кроме того, эти аморфные металлические листы являются более гомогенными, чем обычные кристаллические материалы, используемые для заостренного края бритвенного лезвия. Такие аморфные металлические лезвия имеют большую твердость и могут быть более коррозионно-устойчивыми, чем лезвия, изготовленные из нержавеющей стали.
Стоимость получения таких аморфных сплавов остается достаточно высокой потому, что они должны быть получены или из чистых элементов или из доступных источников элементов, которые имеют достаточно высокую степень чистоты, пригодную для намеренных целей. В патенте США N4400208, опубликованном 23 августа 1983 г. и принадлежащем Луку Аккерману, указывается, что вместо чистых элементов можно получить определенные аморфные сплавы из более коммерчески доступных гранул отливок феррофосфора, чтобы подать фосфор и гранулы отливок феррохрома с целью подачи хрома в композиции аморфного сплава и получения продуктов, имеющих отношение атомных процентов P:C более 1. Эти коммерчески доступные источники не являются абсолютно чистыми источниками соответственно фосфора или хрома потому, что они содержат незначительные количества других нежелательных металлических примесей, присоединенных к ним. Тем не менее такие коммерческие металлические гранулы могут быть специально получены и отлиты в форме соответственно железофосфорных или железохромовых соединений из относительно чистых или получистых источников таких металлов.
Целью настоящего изобретения является использование отходов для подачи фосфора в производство аморфных металлических сплавов.
Еще одной целью является очистка жидких металлических сплавов, полученных из отходов, используемых для подачи фосфора в производство аморфных металлических сплавов. Эти и другие цели изобретения станут понятными из следующего описания.
Настоящее изобретение обеспечивает способ получения аморфного металлического сплава, где феррофосфорный шлак, полученный из электрической печи производства фосфора, используют для подачи металлоида фосфора в сплав, включающий:
a) разделение шлака на верхний слой относительно низкой плотности и гораздо более плотный жидкий слой феррофосфора,
b) смешивание более плотного жидкого феррофосфорного шлака с железом для образования жидкого сплава, включающего металлы, имеющего формулу: FeaCrbVcPd, где атомный процент "a" составляет от около 66 до около 80, "b" - от около 0.5 до около 10, "c" - от около 0.5 до около 5 и "d" - от около 8 до около 20, при этом сумма a, b, c и d равна от около 84 до около 98,
c) обработку жидкого сплава на стадии разделения для удаления нерастворимого шлака, образованного в жидком сплаве, и
d) быстрое охлаждение жидкого сплава ниже температуры стеклования жидкого сплава для превращения его в твердый аморфный металлсодержащий сплав.
При осуществлении настоящего изобретения феррофосфорный шлак, используемый в качестве ингредиента при получении аморфных металлов, получают в виде побочного продукта из процесса производства фосфора в электрических печах. При работе таких электрических печей "шихта" печи или исходный материал включает обожженную руду, уголь и кремнезем. Для избежания попадания летучих веществ при работе печи перед добавлением руды в электрическую печь руду сначала обжигают, удаляя таким образом летучие вещества.
Электроды, расположенные в электрической печи, подают энергию в количестве, достаточном для расплавления шихты и превращения фосфатной руды в элементарные фосфор. Элементарный фосфор вместе с оксидом углерода, полученным в результате реакции, произошедшей в печи, затем удаляют в виде газового потока, из которого селективно конденсируют и извлекают фосфор. В основании электрической печи остается расплавленная масса, которую можно классифицировать как содержащую два различных типа остатка. Верхний слой расплавленной массы представляет то, что можно назвать слоем "шлака", который содержит примеси относительно низкой плотности, которые поднимаются на поверхность расплавленной массы. Большие количества такого шлака образуются довольно быстро и их удаляют из летки, расположенной в боковой стороне печи, которую называют "леткой для шлака". Сливы шлака необходимо производить довольно часто, например каждые 20 мин, или примерно через это время вследствие довольно высокой скорости накопления шлака.
Ниже этого верхнего слоя шлака находится гораздо более плотный феррофосфорный слой, который накапливается с гораздо более низкой скоростью, чем шлак. Этот сырой феррофосфор сливают из печи через летку, которая находится ниже летки, предназначенной для сливов шлака, и ее называют "летка для феррофосфора". Поскольку феррофосфор накапливается с гораздо более медленной скоростью, чем шлак, его сливают из печи через гораздо реже повторяющиеся интервалы времени, т.е. два или три раза в рабочую смену. Слой феррофосфора и слой шлака сливают из электрической печи в расплавленном состоянии и направляют в различные местоположения, где их охлаждают для образования твердых тел, которыми можно легко манипулировать с целью удаления и т.п. При сливе феррофосфорного слоя и слоя шлака разделение между ними не является достаточно отчетливым и поэтому феррофосфор содержит значительные количества шлаковых примесей. Это обычно не имеет особого значения, поскольку феррофосфор представляет небольшое коммерческое значение, когда его извлекают в виде побочного продукта. В таком виде феррофосфор, содержащий значительные количества шлака, который мы назовем "феррофосфорный шлак" (т.к. он содержит как феррофосфор, так и значительные количества шлака), не может быть использован при обычном производстве аморфных металлов, потому что компоненты шлака, которые по существу представляют неметаллические примеси, оксиды, пену и остаток от руды, полученные при работе печи, служат препятствием для соответствующего производства аморфного металлического продукта, имеющего свойства, желательные для конкретного применения, наиболее полезного для таких аморфных металлов. Присутствие шлака вызывает, например, слабо выраженные пятна в пленке аморфного металла и неблагоприятно влияет на его электрические свойства и прочностные свойства.
В настоящем способе для получения желательно жидкого сплава феррофосфорный шлак сначала смешивают с железом, обычно в расплавленном состоянии и с любыми другими легирующими элементами, которые являются желательными в конечном продукте. Затем жидкий сплав обрабатывают на стадии разделения для удаления находящегося в жидком сплаве нерастворимого шлака, которое будет описано ниже. При осуществлении стадии разделения смесь феррофосфорного шлака, железа и других добавок должна быть в расплавленном состоянии. Хотя очевидно, что твердый феррофосфор и железо можно расплавить в соответствующей печи с тем, чтобы осуществить стадию разделения, лучше использовать расплавленный феррофосфорный шлак, когда его сливают из печи, и тем самым сберечь тепло и энергию. Это можно осуществить путем размещения расплавленного феррофосфорного шлака и железа в соответствующем ковше или резервуаре, который можно снабдить с целью предотвращения жидкого сплава от затвердевания источником нагрева. Если ковш или контейнер изолировать в достаточной степени, жидкий сплав будет часто образовывать тонкую твердую настыль в точке соприкосновения его с воздухом или ненагретой поверхностью, но внутри он будет оставаться в расплавленном состоянии.
Отделения шлака от жидкого сплава можно достигнуть рядом способов. Сначала разделение можно осуществлять путем обеспечения жидкого сплава в неподвижном и расплавленном состоянии в течение времени от 1 до 12 ч. Жидкие металлы являются гораздо более плотными, чем шлак и поэтому они имеют склонность опускаться на нижнюю часть расплавленной массы, в то время как шлак естественно поднимается на поверхность расплавленной массы. Вследствие того, что жидкий металл остается неподвижным в ковше или изолированном резервуаре, происходит естественное разделение шлака и жидких металлов. Пока внутреннюю часть массы поддерживают в расплавленном и неподвижном состоянии, не имеет значения тот факт, что жидкий сплав имеет тонкую затвердевшую настыль на наружной стороне расплавленной массы. Поддержание жидкого сплава в неподвижном состоянии является важным для получения максимального отделения шлака от расплавленных металлов. После того, как жидкий сплав оставался в неподвижном состоянии в течение достаточного времени, верхнюю порцию, являющуюся порцией всплывшего шлака, скачивают с жидкого сплава или отделяют иным способом, который будет изложен ниже, для получения жидкого сплава, который по существу не содержит шлака.
Вторым способом осуществления стадии разделения является барботирование через жидкий сплав инертного газа, например аргона. Для избежания охлаждающего воздействия на жидкий металл аргон предпочтительно предварительно нагревают и поток аргона через расплавленную массу ускоряет подъем шлака на поверхность расплава. Аргон или другой инертный газ можно инжектировать непосредственно через отверстие в данной части резервуара или ковша или через полую, находящуюся внизу фурму в жидкий сплав. Отверстие в донной части фурмы обеспечивает выделение аргона или другого инертного газа рядом с основанием резервуара или ковша и барботирование его через расплавленную массу. Этот способ является более быстрым, чем способ нахождения в неподвижном состоянии, описанный выше, но он требует для своего осуществления дополнительного оборудования и источника инертного газа.
Другим способом обработки жидкого сплава на стадии разделения является подвержение его операции фильтрации. Высокая температура жидкого сплава предписывает применение фильтра, который в состоянии противостоять таким высоким температурам без изнашивания. Одним таким типом фильтра является фильтр, выполненный из керамических материалов, устойчивых к таким высоким температурам. Горячее фильтрование осуществить успешно гораздо труднее, чем два описанных выше способа. Это происходит потому, что фильтр может легко забиваться материалами, замерзающими на фильтре, или избыточным шлаком, который засоряет отверстия фильтра. Для успешной фильтрации жидкого сплава он должен быть горячим. Типичным составом феррофосфорного шлака является следующий; вес.%:
Fe - 56-60
P - 24.5-27.8
V - 3.9-5.5
Cr - 3,6-6,0
Si - 0.5-4.5
В феррофосфоре обнаружены также другие металлы, обычно в количествах не более 1%, такие как никель, марганец и молибден.
Как видно из приведенных данных, основными элементами, которые добавляют посредством использования феррофосфора, являются железо и фосфор. Однако феррофосфор добавляет к сплаву также хром и ванадий, а эти элементы вызывают повышение прочности сплава и дальнейший подъем температуры рекристаллизации таких аморфных металлических сплавов на основе железа. Это облегчает термическую обработку таких сплавов на последующих стадиях обработки. Эти элементы также снижают температуру Кюри или температуру, при которой материал теряет ферромагнетизм. Немагнитные изделия обычно требуют низких температур Кюри.
В общем, предпочтительно смешать феррофосфор и железо таким образом, чтобы их соотношение было почти таким же, как в эвтектической смеси, или таким, как в эвтектической смеси. Такая смесь образуется, например, когда содержание железа составляет 77% в пересчете на всю смесь, фосфора - 19%, ванадия - 2% и хрома - 2%, все проценты выражены в виде атомных процентов. Поэтому атомный состав такого аморфного металла выглядит как Fe77V2Cr2P19. В общем, чем ниже температура плавления таких эвтектических смесей относительно температуры плавления основных элементов, таких как железо и фосфор, тем легче расплавленную смесь можно охладить, превратив ее в аморфный сплав. Это является важным потому, что чем ниже эвтектическая температура, тем легче его охладить, то есть закалить сплав, превратив его в аморфную массу. Такое охлаждение позволит охладить более толстые ленты сплава, что является более выгодным с точки зрения получаемого продукта. Обычно ленты должны быть очень тонкими вследствие необходимости закалки всей массы ленты при очень высоких скоростях охлаждения.
Аморфные сплавы, стабилизованные фосфором, имеют преимущества над известными взаимозаменяемыми сплавами на основе бора потому, что они обладают превосходной коррозионной стойкостью. Однако можно заменить часть атомов фосфора бором, или, по желанию, просто добавить к стеклу бор, если в стекле является желательной более высокая теплоустойчивость, т.е. способность легко подвергаться тепловой обработке без охрупчивания. Однако, настоящие стекла, которые содержат как хром, так и ванадий, в результате добавления феррофосфора уже будут иметь усовершенствованные коррозионные свойства, прочностные свойства и более высокую температуру рекристаллизации.
Во всех случаях полученный аморфный сплав, образованный в настоящем изобретении, имеет металлы и их содержания, которые можно выразить посредством формулы FeaCrbVcPd, где атомный процент "a" составляет от около 66 до около 80 (предпочтительно от около 70 до около 80), "b" - от около 0.5 до около 10 (предпочтительно от около 0.5 до около 5), "c" - от около 0.5 до около 5 и "d" от около 8 до около 20 (предпочтительно от около 9 до около 20) и где сумма "a", "b", "c" и "d" равна по крайней мере 84 (предпочтительно от около 88 до около 98). В вышеприведенной формуле в качестве дополнительного поливалентного металлоида можно также добавить такие элементы, как бор, кремний, германий и т.д. или дополнительно или в виде частичной замены фосфора. Могут быть добавлены другие элементы, используемые в таких аморфных сплавах, например Al, Si, Sn, Sb, Ge, In, Be и их смеси.
Расплавленный феррофосфор применяют по существу в качестве источника железа, фосфора, хрома и ванадия в сплавах, использованных для получения аморфных металлов обычно в форме лент или проволок. Для образования таких желательных аморфных металлических продуктов наряду с добавкой железа можно добавить другие хорошо известные элементы в данной области, применяемые в таких сплавах. Однако мы обнаружили, что аморфные металлы на основе железа-фосфора являются очень желательными вследствие улучшенных электромагнитных свойств таких сплавов, когда содержание железа составляет более 75 ат. %. Очевидно, что модификация таких сплавов может быть осуществлена путем включения других элементов или путем изменения относительного процентного содержания элементов в этих аморфных сплавах с целью усовершенствования других свойств металлов, например температуры рекристаллизации и теплостойкости, для того, чтобы сплавы можно было подвергнуть в последующем термической обработке при повышенных температурах.
Пример 1
Как было найдено, проба феррофосфора, извлеченная с основания электрической печи для производства фосфора, имела следующий состав, вес.%: Fe 57,3; P 26,67; Cr 5,7; V 5,9; CaO 0,29; Si 0,45. Расплавленный феррофосфор смешали с расплавленным железом для образования жидкого сплава, дающего ленту, имеющую нижеприведенный состав. Сплав выдержали в расплавленном и неподвижном состоянии в течение 10 ч, при этом образовался всплывший слой шлака, который всплыл на поверхность жидкого сплава. Шлак скачали и отделили от оставшегося жидкого сплава, при этом уменьшилось содержание примесей в шлаке. Жидкий сплав залили на вращающийся металлический круг и охладили до температуры ниже температуры стеклования для образования тонкой сплошной ленты. Ленты имели ширину от 1 до 5 мм, толщину от 30 до 60 мкм, аморфную структуру и состав в атомных процентах, отвечающий формуле Fe77Cr2V2P19. Они имели следующие свойства:
Предел прочности при растяжении - 1250 МПа
Микротвердость - 628-730 кг/см2
Магнитная индукция при насыщении - 9000 гауссов
Пластичность, количество изгибов на 180oC без изломов ленты - 2
Удельное электрическое сопротивление (ρ) - 230μ - Ом/см
Температура стеклования (Tg), oC - 445oC
Гистерезис - Замкнутые контуры гистерезиса в 1.5 раза шире, чем у обычных Fe-B-Si аморфных ленточных продуктов
Пример 2
Использовали методику примера 1, за исключением того, что жидкий сплав обработали барботированием через него аргона посредством полой фурмы, размещенной в расплаве. Аргон поступил на вход фурмы и вышел из дна фурмы в основание жидкого сплава. Полученный шлак, который всплыл на поверхность жидкого сплава, после прерывания потока аргона скачали тем же самым способом, который приведен в примере 1, и жидкий сплав извлекли и охладили как в примере 1. При охлаждении образовались ленты жидкого сплава, подобные лентам, описанным в примере 1.
Изобретение может быть использовано для производства аморфных металлических сплавов. В предложенном способе загрязненный феррофосфорный шлак, представляющий собой побочный продукт из электрической печи производства фосфора, используют для подачи в такие сплавы фосфора, хрома, ванадия и железа путем смешивания его с железом и желательным металлоидом и/или элементами для образования расплавленной смеси, обработки расплавленной смеси на стадии разделения для удаления нерастворимого шлака, образованного в расплавленной смеси, и быстрого охлаждения расплавленной смеси ниже температуры стеклования с целью образования твердого аморфного металлического сплава. Достигается удешевление за счет использования отходов, повышается степень чистоты жидких металлических сплавов. 7 з.п. ф-лы.
US 4400208 A, 23.08.1983 | |||
АМОРФНЫЙ СПЛАВ | 1992 |
|
RU2044799C1 |
US 3856513 A, 24.12.1974 | |||
US 5246483 A, 21.09.1993. |
Авторы
Даты
2000-05-20—Публикация
1995-10-16—Подача