СПЛАВ Российский патент 2000 года по МПК C22C37/10 C22C38/38 

Описание патента на изобретение RU2149915C1

Изобретение относится к области металлургии, в частности к сплавам для изготовления износостойких деталей.

Известен белый износостойкий чугун [1], содержащий, мас.%:
Углерод - 2,8 - 3,4
Кремний - 2,2 - 3,1
Марганец - 2,4 - 3,5
Хром - 5,2 - 8,1
Титан - 0,02 - 0,30
Кальций - 0,002 - 0,020
Железо - Остальное
Чугун является самозакаливающимся (закаливается при охлаждении в литейной форме). Твердость его в литом состоянии составляет HRC 58-61 при коэффициенте относительной износостойкости 2,80 - 3,46 (эталон - сталь 45 с твердостью НВ 200). Недостатком этого чугуна является низкая ударная вязкость (КС до 3 Дж/см2), что не позволяет его использовать для изготовления деталей, работающих в условиях динамического нагружения.

Наиболее близким к предлагаемому является сплав [2], содержащий, мас.%:
Углерод - 1,38 - 1,9
Кремний - 0,32 - 0,9
Марганец - 1,85 - 3,2
Хром - 3,8 - 5,5
Ванадий - 3,8 - 6,4
Алюминий - 0,02 - 0,06
Железо - Остальное
В литом состоянии этот сплав имеет высокую твердость, износостойкость и повышенную ударную вязкость (КС до 20 Дж/см2). К недостаткам сплава относятся нестабильность свойств (твердость HRC от 54 до 62, ударная вязкость КС от 3 до 20 Дж/см2) при существенной зависимости ударной вязкости от химического состава, а также наличие микротрещин в отливках из этого сплава.

Изобретение направлено на повышение стабильности свойств и устранение микротрещин в самозакаливающихся отливках при сохранении высокой твердости и износостойкости.

Это достигается тем, что сплав, содержащий углерод, кремний, марганец, хром, ванадий и алюминий, дополнительно содержит медь, молибден и РЗМ при следующем соотношении компонентов, мас.%:
Углерод - 1,42 - 2,33
Кремний - 0,48 - 1,24
Марганец - 1,84 - 4,05
Хром - 4,4 - 8,5
Ванадий - 2,93 - 7,42
Медь - 0,43 - 1,81
Молибден - 0,10 - 1,12
Алюминий - 0,03 - 0,26
РЗМ - 0,02 - 0,18
Железо - Остальное
В качестве примесей в сплаве могут присутствовать сера (до 0,03%) и фосфор (до 0,06%).

Состав сплава выбран, исходя из следующих соображений.

Нижний предел содержания ванадия уменьшен до 2,93% (по сравнению с 3,8% в прототипе) для корреляции с нижним пределом содержания углерода, так как при слишком высоком содержании ванадия (3,8% и более) в этом случае резко ухудшается закаливаемость сплава.

Увеличен верхний предел содержания хрома до 8,5% для обеспечения самозакаливаемости сплава при верхнем пределе содержания углерода.

В состав сплава введена медь. Совместно с марганцем медь повышает устойчивость и увеличивает количество аустенита, что позволяет уменьшить опасность образования микротрещин в самозакаливающихся отливках. При повышенном содержании (1,0 - 1,81%) медь образует в структуре сплава собственную фазу, которая совместно с аустенитом играет роль демпфера при возникновении локальных динамических нагрузок (например, при мартенситном превращении), снижая возможность образования микротрещин. При содержании меди менее 0,43% не обнаружено проявление ни одного из этих эффектов. Повышение содержания меди более 1,81% приводит к удорожанию сплава без заметного повышения его свойств.

Молибден введен в состав сплава с целью гарантированного обеспечения его самозакаливаемости и повышения стабильности свойств. Содержание молибдена на нижнем пределе можно использовать при повышенном содержании в сплаве марганца и хрома. Увеличение содержания молибдена в сплаве более 1,12% не приводит к повышению свойств, но удорожает сплав.

Редкоземельные металлы (РЗМ) введены в состав сплава в качестве модифицирующей и микролегирующей добавки. Они измельчают структуру сплава, способствуют образованию карбидов типа МС (где М - атомы металла, С - углерод) и формированию композитной структуры на основе этих карбидов, что проявляется в заметной стабилизации свойств на достаточно высоком уровне. При остаточном содержании РЗМ менее 0,02% модифицирующий эффект не проявляется. Слишком большое количество РЗМ (более 0,18%) не приводит к повышению свойств, но значительно удорожает сплав.

Остальные компоненты содержатся в сплаве в пределах, аналогичных прототипу, и их влияние не отличается от изложенного в описании прототипа.

Сплав выплавляли в индукционной тигельной печи ИСТ-0.06 с кислой футеровкой на шихте, состоящей из отходов углеродистой стали, передельного чугуна, ферросплавов (ферросилиция, ферромарганца, феррохрома), отходов электротехнической меди и алюминия. Алюминий использовался частично в составе модификатора совместно с РЗМ. Модифицирование проводили в разливочном ковше при температуре жидкого сплава 1480-1520oC.

В сухих песчано-глинистых формах отливали заготовки в виде брусков сечением 15х15 мм. Из брусков вырезали образцы для испытаний на ударный изгиб, твердость и износостойкость. Для снижения внутренних напряжений образцы подвергали отпуску при 200oC, 1 час. Микрошлифы для металлографического анализа и определения наличия микротрещин изготавливали из разрушенных ударных образцов.

Испытания на износ проводили трением по абразивной ленте (из корундовой шкурки) при скорости движения последней 5 м/мин и удельной нагрузке 7 МПа. Износ определяли по потере массы образца в процессе трения. Относительную износостойкость оценивали коэффициентом
KИ = ИЭМ,
где ИЭ и ИМ - значения износа эталона (сталь 45 с твердостью НВ200) и испытуемого материала соответственно.

Химические составы сплавов и результаты их испытаний приведены в табл. 1 и 2 в сопоставлении с прототипом.

Видно, что по сравнению с прототипом сплавы предлагаемого состава (сплавы 1-5) отличаются более стабильными значениями твердости, ударной вязкости и износостойкости при отсутствии микротрещин в литых образцах. При выходе за рекомендуемые пределы содержаний компонентов в сплавах (сплавы 6 и 7) наблюдается или снижение свойств и их стабильности (сплав 7), или образование микротрещин (сплав 6).

Источники информации
1. Авторское свидетельство СССР N 1289904, кл. С 22 С 37/06, 1986.

2. Авторское свидетельство СССР N 1763507, кл. С 22 С 38/24, 37/10, 1992.

Похожие патенты RU2149915C1

название год авторы номер документа
ЛИТОЙ ТВЕРДЫЙ СПЛАВ 1999
  • Сильман Г.И.
  • Серпик Л.Г.
  • Дмитриева Н.В.
  • Грядунов С.С.
RU2147044C1
АНТИФРИКЦИОННЫЙ ЧУГУН 1996
  • Сильман Г.И.
RU2096515C1
ПОЛОВИНЧАТЫЙ ЧУГУН 1999
  • Сильман Г.И.
  • Серпик Л.Г.
  • Камынин В.В.
RU2147045C1
АНТИФРИКЦИОННЫЙ ЧУГУН 2001
  • Сильман Г.И.
  • Лемешко В.И.
  • Тарасов А.А.
  • Серпик Л.Г.
  • Давыдов С.В.
  • Новиков Д.В.
RU2212467C2
БЕЛЫЙ ЧУГУН 2007
  • Сильман Григорий Ильич
  • Серпик Людмила Григорьевна
  • Грувман Артур Игоревич
RU2356989C1
АНТИФРИКЦИОННЫЙ ЧУГУН 2004
  • Сильман Григорий Ильич
  • Камынин Виктор Викторович
  • Харитоненко Сергей Александрович
RU2267549C1
АНТИФРИКЦИОННЫЙ ЧУГУН 2008
  • Сильман Григорий Ильич
  • Давыдов Сергей Васильевич
  • Сканцев Валерий Михайлович
  • Гончаров Владимир Владимирович
RU2365659C1
АНТИФРИКЦИОННЫЙ ЧУГУН 1996
  • Сильман Г.И.
  • Жаворонков Ю.В.
  • Соболь В.Н.
  • Малахов А.С.
RU2101379C1
ЧУГУН, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВОК ИЗ НЕГО 2004
  • Сильман Григорий Ильич
  • Камынин Виктор Викторович
  • Харитоненко Сергей Александрович
RU2267542C1
ЧУГУН И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Сильман Григорий Ильич
  • Макаренко Константин Васильевич
RU2432412C2

Иллюстрации к изобретению RU 2 149 915 C1

Реферат патента 2000 года СПЛАВ

Использование: в машиностроении для изнашиваемых деталей, работающих в условиях динамического нагружения. Техническим результатом изобретения является повышение закаливаемости и прокаливаемости сплава при увеличении в его структуре общего объема демпфирующих фаз: остаточного аустенита и медистой фазы. Сущность изобретения: сплав содержит компоненты в следующем соотношении мас.%: углерод 1,42 - 2,33; кремний 0,48 - 1,24; марганец 1,84 - 4,05; хром 4,4 - 8,5; ванадий 2,93 - 7,42; медь 0,43 - 1,81; молибден 0,10 - 1,12; алюминий 0,03 - 0,26; РЗМ 0,02 - 0,18; железо остальное. При использовании сплава обеспечивается повышение стабильности свойств и устранение микротрещин в самозакаливающихся отливках при сохранении высокой твердости и износостойкости. 2 табл.

Формула изобретения RU 2 149 915 C1

Сплав, содержащий углерод, кремний, марганец, хром, ванадий, алюминий и железо, отличающийся тем, что он дополнительно содержит медь, молибден и РЗМ при следующем соотношении компонентов, мас.%:
Углерод - 1,42 - 2,33
Кремний - 0,48 - 1,24
Марганец - 1,84 - 4,05
Хром - 4,4 - 8,5
Ванадий - 2,93 - 7,42
Медь - 0,43 - 1,81
Молибден - 0,10 - 1,12
Алюминий - 0,03 - 0,26
РЗМ - 0,02 - 0,18
Железо - Остальное

Документы, цитированные в отчете о поиске Патент 2000 года RU2149915C1

Сплав 1990
  • Сильман Григорий Ильич
  • Жалдак Николай Иванович
  • Жаворонков Юрий Владимирович
  • Дидык Юрий Алексеевич
  • Серпик Людмила Григорьевна
SU1763507A1
Инструментальный сплав 1990
  • Сильман Григорий Ильич
  • Жалдак Николай Иванович
  • Жаворонков Юрий Владимирович
  • Дидык Юрий Алексеевич
  • Фрольцов Михаил Степанович
  • Коршунов Юрий Владимирович
  • Серпик Людмила Григорьевна
SU1747531A1
Сплав на основе железа 1986
  • Харитонов Алексей Николаевич
  • Тихомиров Виктор Петрович
  • Татаринцев Вячеслав Александрович
  • Бондарев Александр Иванович
  • Цветков Валерий Дмитриевич
SU1447917A1
Инструментальный чугун 1984
  • Снаговский Леонид Маркович
  • Унчур Ирина Анатольевна
  • Нижниковская Полина Фридриховна
  • Таран Юрий Николаевич
  • Василев Эмил Янакиевич
  • Кравченко Наталья Владимировна
  • Жданович Казимир Казимирович
  • Беларусов Сергей Игоревич
  • Демченко Галина Федосеевна
SU1266890A1
Белый чугун 1984
  • Шебатинов Михаил Петрович
  • Сбитнев Петр Петрович
  • Прохоров Игорь Иванович
SU1214779A1
Износостойкий чугун 1973
  • Таран Юрий Николаевич
  • Снаговский Виктор Маркович
  • Лучкин Владимир Сергеевич
  • Малик Игорь Васильевич
  • Бовкунов Валерий Егорович
  • Ровенская Таисия Владимировна
  • Леско Альян Гедальевич
  • Грачев Валерий Иванович
  • Савега Валентин Сергеевич
  • Белокопытов Георгий Митрофанович
SU448248A1
Износостойкий сплав 1979
  • Малинов Леонид Соломонович
  • Муратов Виктор Алексеевич
  • Зелепукин Петр Алексеевич
  • Лихачев Михаил Васильевич
  • Зареченский Михаил Васильевич
  • Попов Валерий Андреевич
  • Фомин Эдуард Родионович
SU863702A1
Устройство для определения корреляционной функции 1975
  • Певзнер Герман Самуилович
  • Шадрин Александр Борисович
SU533929A2
Композиционная броневая преграда 2018
  • Мирошниченко Анатолий Васильевич
RU2689905C1
ТАБАЧНАЯ СМЕСЬ 2017
  • Саттон, Джозеф
RU2728621C1
GB 2073247 A, 14.10.1981.

RU 2 149 915 C1

Авторы

Сильман Г.И.

Серпик Л.Г.

Печенкина Л.С.

Даты

2000-05-27Публикация

1999-02-17Подача