ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА Российский патент 2000 года по МПК F02N17/00 

Описание патента на изобретение RU2150603C1

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателей внутреннего сгорания (ДВС), и может использоваться в эксплуатации строительных, дорожных, лесозаготовительных машин, автомобилей, тепловозов и других мобильных машин в условиях отрицательных температур окружающего воздуха.

Известен тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС [1], который состоит из наружного и внутреннего корпусов, между которыми расположен слой теплоизоляции. Внутри теплоаккумулирующего ядра, представляющего собой замкнутую полость, ограниченную внутренним корпусом, расположены газовый теплообменник, соединенный с системой выхлопа отработавших газов, жидкостный теплообменник, соединенный с зарубашечным пространством ДВС, и теплоаккумулирующий материал (ТАМ). Для компенсации увеличения объема ТАМ при его плавлении полость теплоаккумулирующего ядра заполняется ТАМ на 75-85%, а для защиты конструкции от избыточных давлений, возникающих вследствие теплового расширения ТАМ, предусмотрены специальные меры - изготовление внутреннего корпуса из толстостенного металла и применение пояса жесткости.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, вызывая фазовое превращение ТАМ из твердого состояния в жидкое, при этом теплоизоляция препятствует рассеиванию тепловой энергии в окружающую среду.

Использование накопленной теплоты для разогрева ДВС перед пуском в условиях отрицательных температур осуществляется за счет прохождения по жидкостному теплообменнику охлаждающей жидкости, что вызывает кристаллизацию ТАМ, сопровождающуюся выделением теплоты фазового перехода, переносимой теплоносителем в зарубашечное пространство двигателя.

Недостатком указанного устройства является существенная разница в объемах ТАМ в жидком и твердом состояниях. Например, при использовании в качестве ТАМ солей последние могут увеличивать свой объем при плавлении более чем на 25% [2], что вынуждает существенно усиливать конструкцию устройства.

Задача, решаемая предлагаемым изобретением, сводится к замене ТАМ, позволяющей избежать существенной разницы в объемах ТАМ, находящегося в твердой и жидкой фазах, что позволяет упростить конструкцию устройства и уменьшить его массу за счет отказа от усиления конструкции.

Задача решается благодаря тому, что ТАФП, утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции (например, минеральная, шлаковая вата или вакуум). В замкнутой полости, ограниченной внутренним корпусом, расположены два теплообменника - газовый и жидкостный, первый из которых соединен с системой выхлопа отработавших газов ДВС, а второй - с зарубашечным пространством ДВС; между теплообменниками находится ТАМ, способный претерпевать полиморфное превращение.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, а слой теплоизоляции препятствует рассеиванию теплового потока в окружающую среду. При этом ТАМ претерпевает полиморфное превращение в твердой фазе, которое не вызывает существенного изменения его объема в рабочем интервале температур. При работе в режиме отдачи накопленной теплоты в жидкостный теплообменник подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ, при этом последний претерпевает обратимое полиморфное превращение в твердой фазе и отдает определенное количество теплоты, достаточное для разогрева ДВС.

Примером такого ТАМ может быть фторид бериллия BeF2.

При температуре фазового перехода, равной 130oC, тетрагональная кристаллическая решетка фторида бериллия превращается в кубическую, при этом выделяется энергия в виде теплоты фазового перехода, равная 5,3 кДж/моль. Плотность фторида бериллия при 25oC - 1,99 г/см3 [3].

Новым в заявляемом изобретении является использование в качестве ТАМ вещества, которое при нагревании отработавшими газами ДВС претерпевает полиморфное превращение с поглощением теплоты фазового перехода, а при охлаждении жидким теплоносителем - обратимое полиморфное превращение с выделением теплоты фазового перехода, например фторид бериллия.

Указанный новый признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию "изобретательский уровень".

Предлагаемый ТАФП представлен на чертеже.

Он состоит из наружного 1 и внутреннего 2 корпусов, между которыми установлен слой тепловой изоляции 3 (минеральная вата). Внутри корпуса 2 размещено теплоаккумулирующее ядро, представляющее собой замкнутую полость, которая заполнена ТАМ 4 и через которую проходят трубы газового 5 и жидкостного 6 теплообменников.

На поверхности труб 5 и 6 закреплены ребра 7.

Для ликвидации между корпусами 1, 2 и трубами 5, 6 "тепловых мостов" установлены втулки 8 из материала с небольшим коэффициентом теплопроводности.

ТАФП работает следующим образом.

Зарядка аккумулятора тепловой энергией осуществляется пропусканием потока отработавших газов ДВС мобильной машины через трубу 5.

В процессе теплообмена отработавших газов с ТАМ 4 последний нагревается в твердой фазе до температуры полиморфного превращения, испытывает полиморфное превращение с поглощением теплоты фазового перехода, а затем продолжает нагреваться в твердой фазе до некоторой температуры, при которой наступает тепловое равновесие в системе тепловой аккумулятор - окружающая среда.

В период безгаражного хранения мобильной машины, когда ее ДВС заглушен, ТАМ 4 сохраняется при температуре, превышающей температуру полиморфного превращения за счет тепловой изоляции 3.

Для функционирования ТАФП с целью предпускового разогрева ДВС в трубу 6 подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ 4. Последний отдает количество теплоты ΔQ, рассчитываемое по формуле

где mт - масса теплоаккумулирующего материала;
Tо, Tф, Tк - температуры теплоаккумулирующего материала соответственно начальная, полиморфного превращения и конечная;
rф - удельная теплота полиморфного превращения;
C1(T), C2(T) - удельные массовые теплоемкости теплоаккумулирующего материала в интервалах температур соответственно [Tо; Tф] и [Tф; Tк].

За счет организации циркуляции жидкого теплоносителя по замкнутому контуру жидкостный теплообменник ТАФП - зарубашечное пространство ДВС происходит предпусковой разогрев последнего.

Подтверждением достижения поставленной задачи является следующее: применение в качестве ТАМ вещества, претерпевающего обратимые полиморфные превращения с выделением (поглощением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур позволяет упростить конструкцию ТАФП, не применяя при этом специальных поясов жесткости, а также уменьшить массу его металлоконструкции за счет того, что не требуется предусматривать увеличение прочности корпуса теплоаккумулирующего ядра вследствие тепловых расширений. Вышесказанное позволяет сделать вывод о соответствии заявленного изобретения критерию "промышленная применимость".

Библиография:
1. Гулин С.Д., Шульгин В.В., Яковлев С.А. Система разогрева двигателя с помощью теплового аккумулятора. // Лесная промышленность. - 1996. - N 3. - С. 20, 21.

2. Данилин В.Н. Физическая химия тепловых аккумуляторов: Учебное пособие. - Краснодар: КПИ, 1981. - 91 с.

3. Свойства неорганических соединений. Справочник /Ефимов А.И. и др. - Л.: Химия, 1983. - 392 с.

Похожие патенты RU2150603C1

название год авторы номер документа
СИСТЕМА ПОДОГРЕВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1999
  • Шульгин В.В.
  • Гулин С.Д.
  • Мелентьев А.Г.
  • Никифоров Г.И.
  • Золотарев Г.М.
RU2170851C1
ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА 2000
  • Шульгин В.В.
  • Гулин С.Д.
  • Никифоров Г.И.
  • Кинев Ю.Г.
  • Крапивко О.В.
  • Золотарев Г.М.
RU2187049C1
СИСТЕМА ПОДОГРЕВА ГОРОДСКОГО АВТОБУСА 2001
  • Шульгин В.В.
  • Николаенко Г.А.
  • Кулыгин Д.А.
  • Гулин С.Д.
  • Никифоров Г.И.
  • Золотарев Г.М.
RU2230929C2
КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР 2001
  • Ложкин В.Н.
  • Шульгин В.В.
  • Гулин С.Д.
  • Золотарев Г.М.
RU2204027C1
СИСТЕМА ПОДДЕРЖАНИЯ ОПТИМАЛЬНОГО ТЕПЛОВОГО РЕЖИМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2012
  • Кузнецов Александр Вадимович
  • Селиванов Николай Иванович
  • Зыков Сергей Александрович
  • Шестов Алексей Михайлович
RU2488015C1
СИСТЕМА ПОДДЕРЖАНИЯ ОПТИМАЛЬНОГО ТЕПЛОВОГО РЕЖИМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2014
  • Кузнецов Александр Вадимович
  • Селиванов Николай Иванович
  • Зыков Сергей Александрович
  • Шестов Алексей Михайлович
RU2573435C2
СПОСОБ ПРЕДПУСКОВОГО РАЗОГРЕВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1998
  • Гулин С.Д.
  • Шульгин В.В.
  • Гулин В.С.
  • Агафонов А.Н.
RU2150020C1
ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА С САМОРЕГУЛИРУЕМЫМ УСТРОЙСТВОМ ЭЛЕКТРОПОДОГРЕВА 2012
  • Бублий Сергей Анатольевич
  • Бублий Инна Анатольевна
  • Котровский Александр Валентинович
  • Котровская Ирина Олеговна
  • Котровский Александр Александрович
  • Савчук Роман Васильевич
  • Фролов Александр Леонидович
RU2506503C1
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ И НАКОПЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ 1999
  • Гулин С.Д.
  • Гулин В.С.
  • Агафонов А.Н.
  • Шульгин В.В.
  • Мартемьянов О.Л.
  • Терехин А.Н.
RU2174655C2
СПОСОБ И УСТРОЙСТВО ПРЕДПУСКОВОЙ ПОДГОТОВКИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2020
  • Шабалин Денис Викторович
  • Терзи Дмитрий Владимирович
  • Алтухов Яков Вячеславович
  • Курманов Рамил Султангареевич
  • Козлов Андрей Александрович
  • Шудыкин Александр Сергеевич
  • Цветков Иван Валерьевич
  • Агафонов Денис Сергеевич
  • Грязнов Алексей Сергеевич
  • Бадасян Артур Арманович
  • Монахов Михаил Михайлович
  • Кораблев Александр Романович
  • Тюкин Александр Сергеевич
  • Горшков Николай Валерьевич
  • Айтманов Самат Сулейменович
  • Чупин Александр Владимирович
  • Триппель Герман Яковлевич
  • Росолов Михаил Николаевич
  • Савочкин Дмитрий Олегович
RU2755235C2

Реферат патента 2000 года ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателя внутреннего сгорания (ДВС) мобильных машин в условиях отрицательных температур окружающего воздуха. Тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, например минеральная вата. В замкнутой полости, ограниченной внутренним корпусом, находится теплоаккумулирующий материал (ТАМ), способный претерпевать обратимое полиморфное превращение. Теплоаккумулирующий материал пронизан двумя теплообменниками: газовым, соединенным с системой выхлопа ДВС, и жидкостным, соединенным с зарубашечным пространством двигателя. Применение в качестве ТАМ вещества, способного претерпевать обратимые полиморфные превращения с поглощением (выделением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур (например, BeF2), позволяет упростить конструкцию ТАФП и снизить его массовые показатели. 1 ил.

Формула изобретения RU 2 150 603 C1

Тепловой аккумулятор фазового перехода, состоящий из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, способным претерпевать фазовые превращения с поглощением (выделением) теплоты фазового перехода, сквозь которой проходят газовый и жидкостный теплообменники, отличающийся тем, что пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, фазовое превращение которого сводится к обратимому полиморфному превращению, например фторид, бериллия Be F2.

Документы, цитированные в отчете о поиске Патент 2000 года RU2150603C1

Гулин С.Д
и др
Система разогрева двигателя с помощью теплового аккумулятора
Ж
"Лесная промышленность", 1996, N 3, с
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Система охлаждения двигателя внутреннего сгорания 1986
  • Грищенко Сергей Георгиевич
  • Ладыженский Григорий Владимирович
  • Скирич Степан Афанасьевич
SU1390394A1
Устройство для подогрева текучих сред в системах двигателя внутреннего сгорания 1980
  • Афанасьев Виталий Иванович
  • Белов Анатолий Иванович
SU1008481A1
Бесколесный шариковый ход для железнодорожных вагонов 1917
  • Латышев И.И.
SU97A1
DE 3834540 A1, 12.04.1990
US 3919520 A, 11.11.1975
DE 3300946 A1, 19.07.1984.

RU 2 150 603 C1

Авторы

Шульгин В.В.

Гулин С.Д.

Яковлев С.А.

Даты

2000-06-10Публикация

1998-12-01Подача