СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОГИДРАТА СУЛЬФАТА АЛЮМИНИЯ Российский патент 2000 года по МПК C01F7/74 

Описание патента на изобретение RU2152356C1

Изобретение относится к области химической технологии, а именно к способам получения используемого в основном в качестве коагулянта для очистки питьевой воды кристаллогидрата сульфата алюминия, сырьем для производства которого служат гидроксид алюминия и серная кислота.

Известны способы получения кристаллогидрата сульфата алюминия путем смешения гидроксида алюминия или его суспензии в воде с серной кислотой и водой с образованием раствора сульфата алюминия и последующего распыления раствора форсункой во вращающемся барабане [К.В. Ткачев, А.К. Запольский, Ю.К. Кисиль. Технология коагулянтов. Л.: Химия, 1978, с. 95], в аппарате кипящего слоя [А. К. Запольский, А. А. Баран. Коагулянты и флокулянты в процессах очистки воды. Л. : Химия, 1987, с. 52], а также - разбрызгивания раствора внутри башни [К.В. Ткачев, А.П. Запольский, Ю.К. Кисиль. Технология коагулянтов. Л. : Химия, 1978, с. 95; А.К. Запольский, А.А. Баран. Коагулянты и флокулянты в процессах очистки воды. Л.: Химия, 1987, с. 53]. Недостатками способов являются: 1) необходимость удаления избыточной воды и повышенные энергозатраты, а также 2) значительный пылеунос, достигающий 50%, а следовательно, сложнение процесса ввиду необходимости установки сложных очистных сооружений, не позволяющих, однако, полностью утилизировать целевой продукт.

Известны способы получения кристаллогидрата сульфата алюминия путем смешения гидроксида алюминия [Ф.К. Михайлов, Ю.В. Ласточкин, А.Д. Соколова, В. А. Немов. Авт. свид. СССР N 223077, кл. 12 m, 7/74, C 01 F, заявл. 5.01.1967, опубл. Б.И, 1968, N 24, с. 20], или пульпы гидроксида алюминия в воде [М. Е. Позин. Технология минеральных солей, т. 1, Л.: Химия, 1974, с. 645] с серной кислотой с образованием плава, выдержки последнего при 100oC [Авт. свид. СССР N 223077, см. выше] или 110-120oC [М.Е. Позин. см. выше] и отверждения охлажденного воздухом [там же] плава за счет его кристаллизации на движущейся поверхности - холодильных вальцах [Авт. свид. СССР Т 223077, см. выше; М.Е. Позин, см. выше] или прорезиненной ленте с температурой поверхности 83-88oC [Патент ФРГ N 1146042, 1963]. Недостатками способов являются неудовлетворительное качество целевого продукта, обусловленное повышенным содержанием в нем нерастворимого остатка [Авт. свид. СССР N 223077, см. выше] и низким содержанием основного вещества, которое не превышает 14% в пересчете на Al2O3 [М.Е.Позин, см.выше], а также значительные затраты охлаждающих агентов (воздуха, воды или водно-солевых рассолов).

Известен способ получения кристаллогидрата сульфата алюминия [Патент США N 3011878, 1961], позволяющий сократить затраты на охлаждение плава. Способ предусматривает введение в плав до 2% твердой пыли сульфата алюминия в качестве затравки с последующей кристаллизацией охлажденного воздухом целевого продукта на движущейся поверхности - ленте. Введение затравки позволяет уменьшить работу образования зародышей кристаллообразования и тем самым ускорить процесс отверждения плава и сократить затраты агентов на его охлаждение.

Наиболее близким по технической сущности к достигаемому положительному эффекту является способ получения кристаллогидрата сульфата алюминия [Патент Франции N 1220251, C 01 F, 04.01.1960] на основе гидроксида алюминия и серной кислоты, включающий репульпацию гидроксида алюминия в воде, смешение пульпы с серной кислотой с образованием плава, выдержку последнего для полного разложения гидроксида алюминия, введение в плав мелкодисперсной затравки, отверждение охлажденным воздухом плава путем его кристаллизации на охлаждаемой и смачиваемой водой движущейся поверхности. Способ позволяет довести производительность кристаллизации до 3 т/ч при использовании ленты длиной 60 м, что однако не превышает 50 кг/час с 1 пог. м охлаждаемой поверхности.

Целью предлагаемого изобретения является интенсификация процесса отверждения кристаллогидрата сульфата алюминия, при которой съем продукта с 1 пог. м охлаждаемой поверхности возрастает до 105-130 кг/ч.

Поставленная цель достигается тем, что в известном способе получения кристаллогидрата сульфата алюминия, заключающемся в репульпации гидроксида алюминия в воде, смешении пульпы с серной кислотой с образованием плава, выдержке последнего для полного разложения гидроксида алюминия, введении в плав мелкодисперсной затравки и отверждении охлажденного воздухом плава путем его кристаллизации на охлаждаемой и смачиваемой водой движущейся поверхности, - выдержку плава ведут при 100 - 120oC, а в качестве затравки используют кислую соль сульфата алюминия с мольным отношением Al2O3:H2SO4 в диапазоне 2:1-1:1 и содержащую 35-50% кристаллизационной воды. При этом кислую соль получают либо путем предварительной обработки мелкодисперсного сульфата алюминия серной кислотой, либо непосредственно в плаве путем подачи в последний после его выдержки серной кислоты, взятой в количестве 0,08-0,25 ч. H2SO4 на 100 ч. плава, и мелкодисперсного сульфата алюминия, взятого в количестве 1-2 ч. на 100 ч. плава. В связи с тем, что в плав вводится кислая соль, содержащая серную кислоту, расход последней учитывают в общем балансе серной кислоты, корректируя ее количество, подаваемое на смешение с пульпой гидроксида алюминия.

Таким образом, отличие заявляемого способа от известного состоит в выдержке плава при 100- 120oC и использовании в качестве затравки кислых солей сульфата алюминия состава от 2Al2(SO4)3 • H2SO4 • 24H2O или Al4H2(SO4)7 • 24H2O до Al2(SO4)3 • H2SO4 • 24H2O или Al2H2(SO4)4 • 24H2O, для которых мольное отношение Al2O3 : H2SO4 отвечает диапазону от 2:1 до 1: 1, при содержании кристаллизационной влаги 35-50%, вместо солей состава Al2(SO4)3 • n H2O. Дополнительным (технологическим) отличием является введение в процесс серной кислоты в две стадии, причем на вторую стадию (получение кислой соли) подают 0,08 - 0,25 ч. H2SO4 и 1-2 ч. мелкодисперсного сульфата алюминия на 100 ч. плава. Указанные отличия позволяют в 1,6 - 2,5 раза сократить индукционный период кристаллизации сульфата алюминия и соответственно интенсифицировать процесс отверждения целевого продукта, обеспечивая производительность с 1 пог. м кристаллизационной поверхности, равную 105 - 130 кг/ч по сравнению с 50 кг/ч по прототипу.

Основой для создания технических элементов новизны и полезности заявляемого способа, а также выбора диапазонов варьирования физико-химических параметров, представленных в отличительной части формулы изобретения, явилось выполненное авторами исследование и обобщение свойств водных растворов и суспензий, содержащих гидрат и сульфат алюминия, а также серную кислоту (упрощенно система Al2O3 - SO3 - H2O).

Выбор количеств серной кислоты и затравки определяется качеством получаемого сульфата алюминия по уровню свободной кислоты и нерастворимого остатка, а также достигаемому положительному эффекту (съем продукта с 1 пог. м охлаждаемой поверхности). В таблице приводятся конкретные данные, обосновывающие оптимальный диапазон указанных параметров.

Как видно из данных таблицы, при малых расходах Al2(SO4)3 • 18H2O и H2SO4 (0,8 и 0,06% соответственно) производительность стадии кристаллизации и отверждения целевого продукта невелика и не превышает 50 кг/ч с 1 пог. м поверхности. Увеличение доли Al2(SO4)3 • 18H2O более 2% не дает эффекта, а при расходе серной кислоты свыше 0,25 ч. на 100 ч. плава массовая доля H2SO4 в сульфате алюминия составляет 0,15%, что не удовлетворяет требованиям ГОСТ 12966-85.

Для конкретизации заявляемого способа получения кристаллогидрата сульфата алюминия приводятся примеры осуществления процесса.

Пример 1
1900 кг гидроксида алюминия (57,4% Al2O3, 0,5% Na2O + K2O) репульпируют в 1888 кг воды; полученную суспензию в реакторе с мешалкой обрабатывают 3386 кг серной кислоты (92,5% H2SO4). По окончанию загрузки реакционную массу выдерживают при 110oC в течение 60 мин и далее в плав вводят 100 кг затравки в виде кислого сернокислого алюминия: Al2(SO4)3 • H2SO4 • 24H2O, который получают вне реактора путем обработки 76,4 кг Al2(SO4)3 • 18H2O серной кислотой (47,5% H2SO4), взятой в количестве 23,6 кг.

Мольное отношение Al2O3:H2SO4 составляет 1:1 при содержании в затравке 49,5% воды. В результате осуществления процессов разложения гидроксида алюминия и образования центров кристаллизации сульфата алюминия получают 6774 кг плава, который после охлаждения до 100-105oC сливают на движущуюся и охлаждаемую водой поверхность (кристаллизатор), выполненную в виде резиновой ленты длиной 30 м. Скорость движения ленты регулируют таким образом, чтобы толщина расплава, дополнительно охлаждаемого воздухом, составляла 10 мм. Длительность разгрузки реактора при этом 2 часа, что отвечает производительности кристаллизации 113 кг/ч с 1 пог. м ленты. Продукт содержит 16,3% Al2O3, 0,22% нерастворимого остатка (основные сульфаталюминаты натрия); серная кислота отсутствует.

Пример 2
1900 кг гидроксида алюминия репульпируют в 1870 кг воды; полученную суспензию в реакторе с мешалкой обрабатывают 3400 кг серной кислоты (92,5% H2SO4). По окончанию загрузки реакционную массу выдерживают при 110oC в течение 90 мин и далее в плав вводят последовательно 8,7 кг H2SO4 (92,5%) и 110 кг Al2(SO4)3 • 18H2O, что эквивалентно 100 кг затравки в виде кислой соли состава: 2Al2(SO4)3 • H2SO4 • 24H2O (мольное отношение Al2O3 : H2SO4 = 2:1, содержание воды 35,5%). В результате осуществления процессов разложения гидроксида алюминия и образования центров кристаллизации сульфата алюминия получают 6789 кг плава, который после охлаждения до 100-105oC подвергают отверждению, аналогично описанному в примере 1, с той лишь разницей, что длительность разгрузки составляет 125 мин; это отвечает производительности ≈ 110 кг/ч. Продукт содержит 16,3% Al2O3, 0,2% нерастворимого в воде остатка; серная кислота отсутствует.

Таким образом, предлагаемое изобретение позволяет в ≈ 1,5 раза интенсифицировать процесс получения кристаллогидрата сульфата алюминия в целом (с учетом стадий репульпации, смешения реагентов, выдержки массы, разложения гидроксида алюминия, охлаждения и отверждения плава).

Похожие патенты RU2152356C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА КАЛИЯ 1998
  • Шапкин М.А.
  • Попов В.Л.
  • Буксеев В.В.
  • Мильбергер Т.Г.
  • Орлов Е.П.
  • Зубков В.Я.
  • Терешенков В.Н.
RU2148016C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА АЛЮМИНИЯ 2002
  • Кропачев В.Б.
  • Смирнова М.А.
  • Кладова Н.В.
  • Ястребова Г.М.
RU2214365C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА АЛЮМИНИЯ МОДИФИЦИРОВАННОГО 2005
  • Алексеева Галина Николаевна
  • Шипкова Наталья Леонидовна
  • Борозенцева Валентина Владимировна
  • Стрекалов Александр Иванович
  • Тонков Леонид Иванович
  • Рябинин Павел Владимирович
RU2291108C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО КОАГУЛЯНТА 2019
  • Кузин Евгений Николаевич
  • Кручинина Наталия Евгеньевна
  • Фадеев Андрей Борисович
RU2720790C1
Способ получения коагулянта на основе полиоксисульфата алюминия, коагулянт, полученный указанным способом 2015
  • Мишаков Игорь Владимирович
  • Плотников Олег Иванович
  • Снигирев Святослав Витальевич
RU2617155C1
Способ получения гидроксохлорсульфата алюминия 2019
  • Матвеев Виктор Алексеевич
  • Майоров Дмитрий Владимирович
  • Коровин Виктор Николаевич
  • Михайлова Ольга Борисовна
RU2700070C1
СПОСОБ ПЕРЕРАБОТКИ КАРБОНАТНЫХ РАСТВОРОВ 2000
  • Липин В.А.
  • Шмаргуненко А.Н.
  • Кузнецов А.А.
  • Грачев Н.В.
  • Терешенков В.Н.
  • Данилов В.И.
RU2169117C1
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ ОЧИСТКИ ВОДЫ 2022
  • Кузин Евгений Николаевич
  • Кручинина Наталия Евгеньевна
RU2785095C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОЖЕЛЕЗНОГО КОАГУЛЯНТА 2004
  • Алексеева Г.Н.
  • Тонков Л.И.
  • Шипкова Н.Л.
  • Борозенцева В.В.
  • Галкин Е.А.
RU2264352C1
МЕТОД ОТВЕРЖДЕНИЯ РАДИОАКТИВНЫХ И ДРУГИХ ВИДОВ ОПАСНЫХ ОТХОДОВ 2009
  • Ковалёв Олег Владимирович
  • Шестаков Николай Егорович
  • Мозер Сергей Петрович
  • Тхориков Игорь Юрьевич
  • Бондарев Константин Александрович
RU2416832C2

Иллюстрации к изобретению RU 2 152 356 C1

Реферат патента 2000 года СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОГИДРАТА СУЛЬФАТА АЛЮМИНИЯ

Изобретение относится к химической технологии, а именно к способам получения используемого в основном в качестве коагулянта для очистки питьевой воды кристаллогидрата сульфата алюминия. Сущность способа состоит в репульпации гидроксида алюминия в воде, смешении пульпы с серной кислотой с образованием плава, выдержке последнего для полного разложения гидроксида алюминия при 100 - 120°С, введении в плав мелкодисперсной затравки - кислой соли сульфата алюминия с мольным отношением Al2O3 : H2SO4, в диапазоне 2 : 1 - 1 : 1, содержащей 35-50% кристаллизационной воды, и отверждении охлажденного воздухом плава путем его кристаллизации на охлаждаемой и смачиваемой водой движущейся поверхности. Кислая соль может быть получена в результате предварительной обработки мелкодисперсного сульфата алюминия серной кислотой, а также непосредственно в плаве за счет подачи в последний после его выдержки серной кислоты, взятой в количестве 0,08 - 0,25 ч. H2SO4 на 100 ч. плава, и мелкодисперсного сульфата алюминия, взятого в количестве 1 - 2 ч. на 100 ч. плава. Расход серной кислоты, используемой на стадии смешения, корректируется с учетом ее расхода на образование кислой соли. Способ позволяет интенсифицировать технологический процесс в ≈ 1,5 раза. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 152 356 C1

1. Способ получения кристаллогидрата сульфата алюминия, включающий репульпацию гидроксида алюминия в воде, смешение пульпы с серной кислотой с образованием плава, выдержку последнего при 100 - 120oС для полного разложения гидроксида алюминия, введение в плав мелкодисперсной затравки, отверждение охлажденного воздухом плава путем его кристаллизации на охлаждаемой и смачиваемой водой движущейся поверхности, отличающийся тем, что выдержку плава ведут при 100 - 120oС, а в качестве затравки используют кислую соль сульфата алюминия с мольным отношением Al2O3 : H2SO4 в диапазоне 2 : 1 - 1 : 1, содержащую 35 - 50% кристаллизационной воды. 2. Способ по п. 1, отличающийся тем, что кислую соль получают путем предварительной обработки мелкодисперсного сульфата алюминия серной кислотой. 3. Способ по п.1, отличающийся тем, что кислую соль получают непосредственно в плаве путем подачи в последний после его выдержки серной кислоты, взятой в количестве 0,08 - 0,25 ч. H2SO4 на 100 ч. плава, и мелкодисперсного сульфата алюминия, взятого в количестве 1 - 2 ч. на 100 ч. плава. 4. Способ по пп.1 - 3, отличающийся тем, что серная кислота, подаваемая на смешение с пульпой гидроксида алюминия, берется в количестве, учитывающем ее дальнейший расход на получение кислой соли.

Документы, цитированные в отчете о поиске Патент 2000 года RU2152356C1

FR 1220251 A, 24.05.1960
Способ получения сернокислого алюминия 1983
  • Третьяк Евгений Владимирович
  • Золотарев Алексей Егорович
  • Воробьева Инна Павловна
  • Овсиенко Петр Яковлевич
  • Летичевская Нинель Николаевна
SU1135715A1
US 3011878 A, 05.12.1961
Кровать для тяжелобольных 1983
  • Красноюрченко Сергей Григорьевич
  • Ласкавый Виталий Сергеевич
  • Зверев Юрий Дмитриевич
SU1146042A2
US 4171205 A, 16.10.1979
Теплопередающее устройство 1985
  • Безштанковский Петр Емельянович
  • Приседько Александр Васильевич
SU1252644A1
СПОСОБ ПЕРСОНАЛЬНОГО ПОСТОЯННОГО НАБЛЮДЕНИЯ (МОНИТОРИНГА) СОСТОЯНИЯ ЧЕЛОВЕКА, СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ, ОТРАЖАЮЩИХ ЕГО СОСТОЯНИЕ 2007
  • Баяндуров Сурен Эдуардович
  • Гольцов Владимир Викторович
  • Гольцов Владимир Владимирович
RU2354289C2
СПОСОБ СТЕРИЛИЗАЦИИ КОМПОТА ИЗ ВИШНИ 2017
  • Ахмедов Магомед Эминович
RU2648695C1

RU 2 152 356 C1

Авторы

Шапкин М.А.

Попов В.Л.

Буксеев В.В.

Мильбергер Т.Г.

Орлов Е.П.

Зубков В.Я.

Даты

2000-07-10Публикация

1998-11-17Подача