СПОСОБ ПОЛУЧЕНИЯ АЛЮМОЖЕЛЕЗНОГО КОАГУЛЯНТА Российский патент 2005 года по МПК C01F7/00 C02F1/52 

Описание патента на изобретение RU2264352C1

Изобретение относится к технологии неорганических веществ, в частности к получению алюможелезного коагулянта на основе сульфата алюминия, применяемого в процессах водоподготовки, очистки сточных вод и других отраслях промышленности.

В литературе описан ряд способов получения смешанных апюможелезных коагулянтов, однако все они касаются методов переработки отходов производства горнообогатительных производств и отвальных шлаков, а также нефелинового сырья при обработке их серной, соляной кислотами или их смесью при повышенной температуре [А.К.Запольский, А.А.Баран «Коагулянты и флокулянты в процессах очистки воды», Л. «Химия», 1987 г.]. При этом в коагулянт переходит алюминий, железо, кремний и другие примеси, содержащиеся в исходном сырье. Смешанный алюможелезный коагулянт во всех случаях получают в виде кислого раствора, что затрудняет его транспортировку и увеличивает проблемы с хранением.

Известен способ получения алюможелезного коагулянта путем смешения растворов сульфата алюминия и хлорного железа [Л.А.Кульский «Теоретические основы и технология кондиционирования воды», Киев: Наукова Думка, 1980].

Для очистки воды смешанным коагулянтом растворы хлорного железа и сульфата алюминия дозируют раздельно и смешивают в струе, либо предварительно смешивают растворы в отдельной емкости. Оптимальное соотношение хлорного железа и сульфата алюминия в смешанном коагулянте находится в пределах 1:2-2:1 (в пересчете на чистый Al2(SO4)3). Метод введения реагентов зависит от местных условий, определяющих выбор либо простоты дозирования, либо большую гибкость при переходе от одного оптимального соотношения к другому.

Недостатком этого способа является трудность подбора и поддержания определенных пропорций, применение и хранение реагентов в виде кислых растворов. Использование смешанного алюможелезного коагулянта предопределяет применение его вблизи места приготовления, перевозка на дальние расстояния опасна и нецелесообразна.

Наиболее близким по технической сущности и достигаемому результату является способ разложения бокситов серной кислотой [Х.Сафиев, А.К.Запольский, В.И.Гладушко «Производство смешанного алюминиево-железного коагулянта из высокожелезистых гиббситовых бокситов», Химическая технология, №4, 1979 г.]. Способ включает переработку высокожелезистых гиббситовых бокситов на смешанный алюможелезный коагулянт сернокислотным разложением при температуре 100-120°С и грануляционной сушке полученного продукта при температуре 150-200°С в аппарате кипящего слоя или кристаллизации его после частичного обезвоживания на столах-кристаллизаторах.

Предварительно боксит дробят до размера частиц 3-10 мм, затем измельчают в дисковой мельнице мокрого помола до получения фракции менее 0,5 мм и готовят бокситовую пульпу с влажностью 40-55%. Далее в пульпу дозируют концентрированную серную кислоту из расчета получения смеси, содержащей 55-60% кислоты. При этом температура реакционной массы повышается до 100-120°С, одновременно наблюдается пенообразование. Процесс разложения пульпы продолжается в течение трех часов, степень извлечения алюминия и железа составляет 90-95%. Полученный плав сернокислых солей имеет следующий состав, мас.%: Al2O3=11,0÷12,0; Fe2O3=7,5÷8,5; H2SO4(своб.)=0,1÷0,3%, нерастворимый остаток - 2,5÷4,0, атомное отношение железа к алюминию составляет 0,47.

Грануляцию коагулянта проводят в грануляторе с псевдоожиженным слоем при температуре 150-200°С после предварительного разбавления плава до плотности 1,30÷1,55 г/см. Гранулированный смешанный коагулянт имеет следующий состав, мас.%: Al2O3=14,0÷16,0; Fe2O3=10,0÷12,0; H2SO4(своб.) до 0,2, нерастворимый остаток - 4,5-5,5.

Кристаллизацию коагулянта проводят без предварительного разбавления плава на столах-кристолизаторах. После частичного обезвоживания в процессе кристаллизации алюможелезный коагулянт имеет следующий состав, мас.%: Al2O3=12,2; Fe2O3=8,2; H2SO4(своб.)=0,15; нерастворимый остаток - 3,2. При этом атомное отношение железа к алюминию составляет 0,43.

Известный способ является длительным, требующим тщательной подготовки исходного сырья, при этом в готовый коагулянт переходят все примеси, содержащиеся в высокожелезистых гиббситовых бокситах. При очистке воды хозяйственно-питьевого назначения примеси переходят в воду, тем самым увеличивая содержание вредных веществ в воде.

Одновременно, высокое содержание железа провоцирует быстрый гидролиз коагулянта при подготовке рабочего раствора и осаждение полезных компонентов в емкостях рабочих растворов, увеличивая тем самым расход коагулянта. Соотношение между железом и алюминием (0,43-0,47) не соответствует их взаимной коагуляции, что выражается в увеличении содержания остаточного железа в воде.

Перед изобретателями стояла задача - разработать способ получения алюможелезного коагулянта, свободного от посторонних соединений, обладающего высокой коагулирующей способностью с одновременным получением товарного продукта в твердом виде.

Поставленная задача решается следующим образом. Получение смешанного алюможелезного коагулянта на основе сульфата алюминия осуществляют взаимодействием гидроксида алюминия с серной кислотой при повышенной температуре, выдержке и кристаллизации продукта.

Соединение железа вводят в суспензию гидроксида алюминия при атомном отношении железа к алюминию, равном 0,14-0,2, а серную кислоту на сульфирование подают с избытком 4÷8 мас.% от стехиометрически необходимого.

Предлагаемый способ осуществляют следующим образом.

Предварительно готовят суспензию гидроксида алюминия в воде, затем ее подают в реактор синтез и при постоянно работающей мешалке вводят в суспензию соединение железа. После этого начинают процесс сульфирования подачей в реактор серной кислоты, в результате чего реакционная смесь в реакторе разогревается до температуры 100-120°С. Для обеспечения полноты протекания процесса сульфирования реакционную массу выдерживают в реакторе некоторое время, полученный плав алюможелезного коагулянта при необходимости корректируют и начинают процесс кристаллизации коагулянта.

Введение соединения железа на стадии приготовления пульпы для сульфирования обеспечивает однородность по составу получаемого алюможелезного коагулянта. Одновременно образуется активная гидроокись железа, легко подвергаемая процессу сульфирования. В то же время, гидроксид алюминия взаимодействует с образующейся соляной кислотой с появлением легкогидролизуемого соединения алюминия с хлором. Таким образом, в состав сульфата алюминия вводится два легкогидролизующихся соединения взамен сульфата алюминия, трудно подвергаемого гидролизу в холодное время года, что увеличивает коагулирующую способность смешанного коагулянта за счет снижения времени гидролиза.

Использование в качестве исходного сырья гидроксида алюминия, содержащего не менее 90 мас.% основного вещества и не более 10 мас.% влаги, и соединения железа, не являющегося отходом производства, способствует получению алюможелезного коагулянта, свободного от примесей тяжелых металлов, кремния и других соединений, снижающих качество очистки воды.

При атомном отношении железа к алюминию менее 0,1 получаемый алюможелезный коагулянт обладает коагулирующей способностью на уровне сульфата алюминия. В случае атомного отношения железа к алюминию более 0,2 получаемый смешанный коагулянт является неустойчивым, гидролизующимся на стадии приготовления рабочего раствора. Одновременно снижается температура кристаллизации смешанного коагулянта, приводящая к увеличению продолжительности процесса и снижению производительности установки.

Избыток кислоты до 4 мас.% от стехиометрически необходимого количества ведет к получению коагулянта, имеющего водородный показатель (рН) 3% водного раствора более 2,7, что способствует гидролизу железа на стадии приготовления рабочего раствора. Избыток серной кислоты более 8 мас.% от стехиометрически необходимого повышает температуру кристаллизации, что способствует увеличению вероятности начала кристаллизации в объеме реакционной массы в реакторе синтеза и остановке процесса.

Сущность предлагаемого изобретения поясняется примерами 1-5.

В качестве соединения железа используется техническое хлорное железо.

Пример 1. В реактор, представляющий собой вертикальный цилиндрический аппарат с плоским днищем и крышкой из коррозионно-стойкой стали объемом 7,4 м3, из репульпатора при работающей мешалке загружают гидроксид алюминия в виде суспензии при отношении Т:Ж=1:1. Количество загружаемого гидроксида алюминия составляет 1,9 тонн при влажности не более 10 мас.%. После перекачки всей суспензии начинают при постоянном перемешивании загрузку хлорного железа в количестве 450 кг из расчета соблюдения атомного отношения железа к алюминию, равного 0,14.

Далее проводят процесс сульфирования подачей 2 м3 серной кислоты плотностью 1830 кг/м3 и концентрацией 93,2 мас.%. В процессе смешения серной кислоты с суспензией происходит разогрев реакционной массы до 100-120°С с одновременным образованием плава алюможелезного коагулянта. Количество залитой серной кислоты превышает стехиометрически необходимое количество на 6 мас.%.

После выдержки реакционной массы в течение 20-30 минут и необходимой корректировке плава начинают процесс кристаллизации. Кристаллизатор представляет собой ленточный конвейер, дополнительно охлаждаемый воздухом. В результате получают 9 тонн готового продукта - алюможелезного коагулянта, имеющего химическую формулу Al2O3·0,28FeCl3·25H2O и содержащего, мас.%: Al2O3=12,2; Fe2O3=2,7; не растворимых в воде веществ - 1,5% и имеющего атомное отношение железа к алюминию, равное 0,14. Температура кристаллизации алюможелезного коагулянта составляет 7°С.

В таблице 1 представлены результаты опытов, проведенных по аналогичной методике при различных количествах избыточной серной кислоты (1-3), а также различном атомном отношении железа к алюминию при постоянном количестве избыточной серной кислоты, равном 6 мас.% (4-5).В таблице 2 представлены результаты сравнительной очистки воды реки Кама полученным алюможелезным коагулянтом и серийно-выпускаемым сульфатом алюминия в холодный период года. Получены положительные результаты испытания алюможелезного коагулянта по МУП «Водоканал» г. Перми, г. Чайковский Пермской области, г. Ростов-на-Дону. Выпуск коагулянта организован на технологическом оборудовании существующего производства сульфата алюминия ОАО «Сорбент» и рекомендуется его использование взамен сульфата алюминия в холодный период года при температуре очищаемой воды ниже 10°С.

Таблица 1Результаты проведения опытов 1-5№№ п.п.Условия опытовХарактеристика коагулянтаИзбыток H2SO4, % масс.Отношение Fe2O3/Al2O3Температура кристаллизации, °СAl2O3, %Fe2O3, %Сумма окислов, %рНХимическая формула16,00,147912,22,714,92,4Al2(SO4)3·0,28FeCl3
25H2O
26,00,088012,51,614,12,3Al2(SO4)3·0,16FeCl3
25H2O
Э6,00,227311,93,715,62,7X)Al2(SO4)3·0,44FeCl3
25H2O
43,50.147812,92,915,72,7X)Al2(SO4)3·0,28FeCl3·22H2O58,50.148312,42,715,12,1Al2(SO4)3·0,28FeCl3
20H2O
Примечание: X) Коагулянт гидролизуется на стадии приготовления рабочего раствора.

Таблица. 2Сравнительная очистка воды реки Кама сульфатом алюминия (СА) и алюможелезным коагулянтом (АЖК) при температуре воды 4÷7°CПоказателиИсходн. Н2OДоза АЖК*), ∑ ок., мг/дм3Доза СА, Al2O3, мг/дм3Норма по СанПиН 2.1.4.1074-018101281012Цветность град.27,710101011111120 град.Мутность мг/дм30,050,30,50,250,60,40,11,5 мг/дм3Железо, мг/дм30,50,150,20,10,10,10,10,3 мг/дм3Окисляемые, мг/дм36,65,33,83,64,64,42,45,0 мгО2/дм3Водородный показатель рН7,67,47,37,37,37,37,36-9Алюминий, мг/дм30,020,30,40,30,50,40,40,5 мг/дм3Примечание: *) - доза по Al2O3 снижена на 20% масс. по сравнению с сульфатом алюминия и составляет соответственно 6,4; 8,0; 9,6 мг/дм3;
- введение ионов железа улучшает процесс хлопьеобразования, заметное образование и укрупнение хпопьев начинается через 5-10 мин.

Похожие патенты RU2264352C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА НА ОСНОВЕ СМЕШАННЫХ СОЛЕЙ АЛЮМИНИЯ 2000
  • Алексеева Г.Н.
  • Демидов В.П.
  • Алифанова Н.Н.
  • Шипкова Н.Л.
  • Тонков Л.И.
  • Галкин Е.А.
  • Хусаинов У.Г.
  • Миннибаев А.М.
RU2177908C2
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА 1995
  • Ханин А.Б.
  • Иванов А.Д.
  • Будыкина Т.А.
  • Мартынов Ю.П.
  • Бабаскин Л.А.
RU2097335C1
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО КОАГУЛЯНТА 2019
  • Кузин Евгений Николаевич
  • Кручинина Наталия Евгеньевна
  • Фадеев Андрей Борисович
RU2720790C1
КОАГУЛЯНТ-АДСОРБЕНТ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ, СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА-АДСОРБЕНТА ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И СПОСОБ ИСПОЛЬЗОВАНИЯ КОАГУЛЯНТА-АДСОРБЕНТА ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОКОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ 2009
  • Бурков Ким Александрович
  • Дробышев Анатолий Иванович
  • Караван Светлана Васильевна
  • Пинчук Ольга Афанасьевна
RU2411191C1
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА ДЛЯ ОЧИСТКИ ВОДЫ 2009
  • Дресвянников Александр Федорович
  • Сорокина Ирина Демьяновна
RU2418746C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕГО КОАГУЛЯНТА 2010
  • Винникова Ольга Станиславна
  • Лукашов Сергей Викторович
  • Пашаян Арарат Александрович
RU2424195C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕГО КОАГУЛЯНТА ИЗ ОТХОДОВ ПРОИЗВОДСТВ 2018
  • Бархатов Виктор Иванович
  • Добровольский Иван Поликарпович
  • Капкаев Юнер Шамильевич
  • Головачев Иван Валерьевич
RU2702572C1
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА 2001
  • Куцак В.С.
  • Газизов Ф.Ф.
  • Шаповалов Е.В.
  • Арутюнов Г.А.
RU2215691C2
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА АЛЮМИНИЯ МОДИФИЦИРОВАННОГО 2005
  • Алексеева Галина Николаевна
  • Шипкова Наталья Леонидовна
  • Борозенцева Валентина Владимировна
  • Стрекалов Александр Иванович
  • Тонков Леонид Иванович
  • Рябинин Павел Владимирович
RU2291108C1
КОАГУЛЯНТ ДЛЯ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 2000
  • Караван С.В.
  • Хрипун М.К.
  • Мюнд Л.А.
RU2195434C2

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ АЛЮМОЖЕЛЕЗНОГО КОАГУЛЯНТА

Изобретение относится к технологии неорганических веществ, в частности к получению алюможелезного коагулянта на основе сульфата алюминия, применяемого в процессах водоподготовки, очистки сточных вод и других отраслях промышленности. Способ включает взаимодействие гидроксида алюминия с серной кислотой при повышенной температуре, выдержку и кристаллизацию продукта, при этом в суспензию гидроксида алюминия вводят соединение железа при атомном отношении железа к алюминию, равном 0,10-0,20, а серную кислоту на взаимодействие подают с избытком 4-8 мас.% от стехиометрически необходимого. Способ позволяет получить коагулянт, обладающий высокой коагулирующей способностью с одновременным получением товарного продукта в твердом виде. 2 табл.

Формула изобретения RU 2 264 352 C1

Способ получения алюможелезного коагулянта на основе сульфата алюминия, включающий взаимодействие гидроксида алюминия с серной кислотой при повышенной температуре, выдержку и кристаллизацию продукта, отличающийся тем, что в суспензию гидроксида алюминия вводят соединение железа при атомном отношении железа к алюминию, равном 0,10-0,20, а серную кислоту на взаимодействие подают с избытком 4÷8 мас.% от стехиометрически необходимого.

Документы, цитированные в отчете о поиске Патент 2005 года RU2264352C1

RU 92015882 A, 19.06.1995
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО КОАГУЛЯНТА 0
  • Ю. С. Плышевский, К. В. Ткачев, В. А. Бин, Н. В. Гаркунова,
  • Л. А. Трифонова, И. Н. Костюковский, Н. К. Бартосевич, В. А. Ершов
  • Г. И. Токарев
SU327790A1
Способ получения алюминийсодержащего коагулянта 1986
  • Захаров Виктор Иванович
  • Гершенкоп Александр Шлемович
  • Петрова Валентина Ивановна
  • Соколов Борис Павлович
  • Кайтмазов Виктор Албенович
  • Васильева Нина Яковлевна
  • Гандрусов Николай Андреевич
  • Маслов Александр Дмитриевич
  • Макаров Алексей Михайлович
  • Соловьева Татьяна Ивановна
  • Байтаршинова Ирина Анатольевна
SU1399268A2
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА 1995
  • Ханин А.Б.
  • Иванов А.Д.
  • Будыкина Т.А.
  • Мартынов Ю.П.
  • Бабаскин Л.А.
RU2097335C1
СПОСОБ ОЧИСТКИ ЩЕЛОЧНЫХ СТОЧНЫХ ВОД, НЕОРГАНИЧЕСКИЙ КОАГУЛЯНТ ДЛЯ ОЧИСТКИ ЩЕЛОЧНЫХ СТОЧНЫХ ВОД И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1994
  • Диев В.Н.
  • Сабирзянов Н.А.
  • Яценко С.П.
  • Анашкин В.С.
  • Скрябнева Л.М.
RU2085509C1
WO 9948814 А1, 30.09.1999
Комплекс возведения сборной железобетонной крепи 1986
  • Косков Иван Григорьевич
  • Бураков Виталий Львович
  • Тарасьев Владимир Иванович
  • Матвиенко Евгений Владимирович
  • Цимощук Игорь Петрович
  • Мовчан Иван Емельянович
SU1463929A1

RU 2 264 352 C1

Авторы

Алексеева Г.Н.

Тонков Л.И.

Шипкова Н.Л.

Борозенцева В.В.

Галкин Е.А.

Даты

2005-11-20Публикация

2004-10-27Подача