КАТОДНАЯ ЯЧЕЙКА ЭЛЕКТРОЛИЗЕРА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ НИКЕЛЯ Российский патент 2000 года по МПК C25C7/00 C25C1/08 

Описание патента на изобретение RU2152460C1

Изобретение относится к области металлургии тяжелых цветных металлов, в частности к области электролитического рафинирования никеля.

Известна катодная ячейка электролизера для электрохимического рафинирования никеля (Смирнов В.И., Цейдлер А.А. и др., Металлургия меди, никеля, кобальта, Металлургия, 1996, с. 204), состоящая из деревянного каркаса, никелевой основы, расположенной внутри каркаса, диафрагменной перегородки из 100% льняного брезента, имеющая режимные параметры: циркуляция католита 23-28 л/час; катодная плотность тока 180-220 А/м2; электросопротивление 10-15 Ом•см2; водопроницаемость 8-10 л/час •м2; продолжительность кампании 20-25 суток.

Известна катодная ячейка электролизера для электролитического рафинирования никеля (Грань Т.В., Крылов А.С. Электролитическое рафинирование никеля, Металлургия, 1970, с.23), состоящая из деревянного каркаса, никелевой основы, диафрагменной перегородки из льнолавсанового брезента, содержащего 67% льна и 33% полиэфира, и имеющая режимные параметры: скорость циркуляции католита 23-28 л/час; катодная плотность тока 180-220 А/м2; электросопротивление 10-15 Ом•см2; водопроницаемость 10-15 л/час•м2; продолжительность кампании 25-30 суток.

Недостатками известных катодных ячеек являются: незначительная продолжительность кампании; высокие эксплуатационные затраты; низкая сортность получаемого металла; непродолжительный срок службы диафрагменной перегородки из-за низкой химической стойкости брезентов в кислых средах.

Наиболее близкой по технической сущности к предлагаемой нами катодной ячейке является (Животинский П.Б. Пористые перегородки и мембраны в электрохимической аппаратуре. Химия, 1978, с.41) катодная ячейка электролизера для электролитического рафинирования никеля, включающая полипропиленовый каркас, никелевую основу, диафрагменную перегородку из 100% полиэфира и имеющая следующие режимные параметры: скорость циркуляции католита 23-28 л/час; катодная плотность тока 200-270 А/м2; электросопротивление 13-17 Ом•см2; водопроницаемость 40-80 л/час•м2; продолжительность кампании 70-100 суток.

Недостатками данной катодной ячейки являются высокие эксплуатационные затраты из-за высокой стоимости диафрагменной перегородки, повышенный расход электрической энергии, повышенная чувствительность режимных параметров ячейки к составу католита и анолита.

В никелевом производстве при электролитическом получении катодного никеля катодная ячейка электролизера обеспечивает электроосаждение никеля на никелевой (катодной) основе и получение чистого металла в результате предотвращения электрохимического и диффузионного переноса примесей из анолита к катоду. При использовании в качестве диафрагменной перегородки льняного и льнолавсанового брезентов, имеющих низкую химическую стойкость в кислотной среде, происходит разрушение тканевой перегородки, увеличивается ее проницаемость (до 100 л/час•м2), в результате чего создаются условия для подсоса анолита в катодную ячейку и осаждения примесей на никелевой основе, что приводит к браку металла.

Использование диафрагменной перегородки из синтетической полиэфирной ткани, имеющей высокую химическую стойкость в кислых средах и высокое электрическое сопротивление, приводит к повышенным затратам электроэнергии и, как следствие этого, к прогарам и преждевременному выходу из строя диафрагменной перегородки
Поставленной перед нами технической задачей является снижение энерго- и материальных затрат, увеличение продолжительности кампании диафрагменной ячейки и повышение качества металла.

Сущность заявленного решения состоит в том, что в катодной ячейке электролизера при плотности тока на катоде 180-270 А/м2 и скорости циркуляции католита 23-28 л/час диафрагменная перегородка выполнена из ткани, содержащей 33-36% хлопка и 64-67% полиэфира, и имеет электрическое сопротивление не более 13,5 Ом•см2, водопроницаемость 15-35 л/час•м2, поверхностную плотность 780-830 г/м2.

Экспериментально установлено, что при содержании в ткани хлопка менее 33% и полиэфира более 67% увеличивается водопроницаемость перегородки и она перестает выполнять свое назначение. При содержании хлопка более 36% и полиэфира менее 64% происходит химическое разрушение ткани и увеличивается ее расход. Диафрагменная перегородка, имеющая водопроницаемость более 35 л/час•м2, не препятствует попаданию примесей из анолита в катодную ячейку, из-за подсоса анолита увеличиваются выход брака металла и расход ткани из-за прогаров. При водопроницаемости менее 15 л/час•м2 диафрагменная перегородка обладает высоким электросопротивлением, что приводит к увеличению расхода электроэнергии при электролизе никеля.

Пример.

Катодную ячейку электролизера, состоящую из полипропиленового каркаса, диафрагменной перегородки, содержащей 33-36% хлопка и 64-67% полиэфира, никелевой (катодной) основы, испытали в промышленном масштабе.

Изготовили опытные ячейки и установили их в промышленные ванны. При электрорафинировании никеля использовали католит следующего состава: никель 70-80 г/л; хлор 35-40 г/л; SO4-2 120-140 г/л; H2SO4 0,7-0,9 г/л, pH 1,5-2,0, температура 70-80oC. Католит подавали сверху в катодную ячейку со скоростью 23-28 л/час и при этом поддерживали в ней уровень на 30-60 мм выше уровня анолита в ванне.

Состав анолита: никель 70-80 г/л, кобальт 0,4-0,5 г/л, железо 0,7- 0,9 г/л, медь 0,8-1,0 г/л, pH 0,76-1,24, температура 70-80oC. Плотность тока на катоде установили 180-270 А/м2.

В процессе электрорафинирования никеля осуществляли контроль режимных параметров работы катодных ячеек: плотности тока, скорости циркуляции католита, электросопротивления перегородки, водопроницаемости, напряжения на ванне, веса нарощенного никеля, продолжительности кампании перегородки.

На основе экспериментальных данных рассчитаны показатели эксплуатации катодной ячейки: удельный расход электроэнергии и удельный расход ткани (на 1 тонну нарощенного никеля). Качество катодного металла определялось по внешнему виду и химическому составу.

Результаты испытаний приведены в таблице.

Результаты испытаний (опыт N 1) показывают, что при использовании в катодной ячейке диафрагменной перегородки из ткани, содержащей 30% хлопка и 70% полиэфира, при циркуляции электролита в ячейке 25,4 л/час и плотности тока 255 А/м2, водопроницаемость перегородки возросла до 42 л/час•м2, что привело в восьми опытах, как видно из таблицы, к снижению уровня электролита в ячейке до уровня анолита. В результате подсоса анолита в катодную ячейку получен бракованный металл.

При использовании катодной ячейки с перегородкой из ткани, содержащей 40% хлопка и 60% полиэфира (опыт N 4), за счет химического растворения хлопка происходит увеличение водопроницаемости перегородки, подсоса анолита и, как следствие, получение бракованного электролитного никеля. При этом увеличивается удельный расход ткани до 5,8 м2/т и расход электроэнергии до 2427 кВт•час/т.

Опыты N 2 и N 3 показывают, что катодная ячейка с диафрагменной перегородкой из ткани, содержащей 33-36% хлопка и 64-67% полиэфира, при плотности ткани 780-830 г/м2, водопроницаемостью от 18 до 30 л/час•м2 и электросопротивлением 12,5-13,5 Ом•см2 позволяет получить наиболее высокие показатели: расход ткани - 1,8-2,1 м2 на 1 т никеля; расход электроэнергии 2347-2371 кВт•час/т.

Как видно из проведенных опытов и результатов таблицы, именно совокупность признаков, предложенная нами, обеспечивает получение желаемого технического результата.

Похожие патенты RU2152460C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ДИАФРАГМЕННОГО ЭЛЕМЕНТА ЯЧЕЙКИ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ И ДИАФРАГМЕННЫЙ ЭЛЕМЕНТ 2003
  • Ершов С.Ф.
  • Рябушкин И.А.
  • Юрьев А.И.
  • Солонин А.В.
  • Волков С.В.
  • Погребенко Д.М.
  • Котухов С.Б.
  • Глухов И.Ф.
  • Кожухов В.В.
  • Литвиненко Э.С.
  • Османова С.Р.
  • Серво Матти
RU2256729C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЛИТНОГО НИКЕЛЯ 2005
  • Демидов Константин Александрович
  • Беседовский Сергей Григорьевич
  • Шелестов Николай Алексеевич
  • Хомченко Олег Александрович
  • Садовская Галина Ивановна
  • Жиличкин Сергей Иванович
RU2303086C2
СПОСОБ ПРОИЗВОДСТВА НИКЕЛЕВЫХ АНОДОВ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ НИКЕЛЯ 2000
  • Мироевский Г.П.
  • Попов И.О.
  • Ермаков И.Г.
  • Беседовский С.Г.
  • Брюквин В.А.
  • Кубасов В.Л.
  • Парецкий В.М.
RU2166554C1
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНЫХ МАТЕРИАЛОВ 1999
  • Мироевский Г.П.
  • Ермаков И.Г.
  • Козырев В.Ф.
  • Голов А.Н.
  • Волков Л.В.
  • Одинцов В.А.
  • Хомченко О.А.
RU2146720C1
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО НИКЕЛЯ 1999
  • Хагажеев Д.Т.
  • Мироевский Г.П.
  • Попов И.О.
  • Онищин Б.П.
  • Розенберг Ж.И.
  • Рябко А.Г.
RU2141010C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ 1999
  • Мироевский Г.П.
  • Демидов К.А.
  • Ермаков И.Г.
  • Голов А.Н.
  • Хомченко О.А.
  • Попов И.О.
  • Шкондин М.А.
RU2152459C1
ДИАФРАГМЕННАЯ ТКАНЬ ДЛЯ ЭЛЕКТРОЭКСТРАКЦИИ НИКЕЛЯ И СПОСОБ ЕЁ ИЗГОТОВЛЕНИЯ 2018
  • Попов Лев Николаевич
  • Керимов Софром Гусейнович
  • Шевкова Раиса Петровна
RU2692275C1
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНЫХ МАТЕРИАЛОВ 1999
  • Мироевский Г.П.
  • Козырев В.Ф.
  • Ермаков И.Г.
  • Голов А.Н.
  • Одинцов В.А.
  • Хомченко О.А.
  • Соловьев Е.М.
RU2154119C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ НИКЕЛЯ 1999
  • Мироевский Г.П.
  • Голов А.Н.
  • Ермаков И.Г.
  • Козырев В.Ф.
  • Одинцов В.А.
  • Хомченко О.А.
RU2144098C1
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО НИКЕЛЯ 2001
  • Хагажеев Д.Т.
  • Мироевский Г.П.
  • Рябко А.Г.
  • Розенберг Ж.И.
  • Демидов К.А.
  • Голов А.Н.
  • Хомченко О.А.
  • Садовская Г.И.
RU2191850C1

Иллюстрации к изобретению RU 2 152 460 C1

Реферат патента 2000 года КАТОДНАЯ ЯЧЕЙКА ЭЛЕКТРОЛИЗЕРА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ НИКЕЛЯ

Изобретение относится к металлургии тяжелых цветных металлов, в частности к области электролитического рафинирования никеля. Катодная ячейка электролизера для электролитического рафинирования никеля включает диэлектрический каркас, никелевую основу внутри его, диафрагменную перегородку, выполненную из ткани, содержащей 33-36% хлопка и 64-67% полиэфира, и имеющую электросопротивление не более 13,5 Ом • см2, водопроницаемость 15-35 л/ч•м2, поверхностную плотность 780-830 г/м2. При этом поддерживается скорость циркуляции католита 23 - 28 л/ч и плотность тока 180 - 270 А/м2. Изобретение позволяет снизить энерго- и материальные затраты, увеличить продолжительность кампании диафрагменной ячейки и повысить качество металла. 1 табл.

Формула изобретения RU 2 152 460 C1

Катодная ячейка электролизера для электролитического рафинирования никеля, включающая диэлектрический каркас, никелевую основу внутри его, диафрагменную перегородку и обеспечивающая скорость циркуляции католита 23 - 28 л/ч, плотность тока 180 - 270 А/м2, отличающаяся тем, что диафрагменная перегородка выполнена из ткани, содержащей 33 - 36% хлопка и 64 - 67% полиэфира, и имеет электросопротивление не более 13,5 Ом • см2, водопроницаемость 15 - 35 л/ч • м2, поверхностную плотность 780 - 830 г/м2.

Документы, цитированные в отчете о поиске Патент 2000 года RU2152460C1

Животинский П.Б
Пористые перегородки и мембраны в электрохимической аппаратуре
- Химия, 1978, с.41
Смирнов В.И., Цейдлер А.А
и др
Металлургия меди, никеля, кобальта
- Металлургия, 1966, с.204
Грань Т.В., Крылов А.С
Электролитическое рафинирование никеля
- Металлургия, 1970, с.23
US, 4078979, 14.03.1978.

RU 2 152 460 C1

Авторы

Хагажеев Д.Т.

Мироевский Г.П.

Онищин Б.П.

Попов И.О.

Сиротина Н.Г.

Алексеев К.Ю.

Южаков В.П.

Даты

2000-07-10Публикация

1999-12-29Подача