Изобретение относится к области металлургии, в частности к разработке сплава на основе титана, используемого для применения в качестве высокопрочного конструкционного материала, подвергающегося упрочняющей термической обработке при ступенчатом отжиге.
Наиболее близким по технической сущности и достигаемому результату к предложенному сплаву является известный сплав на основе титана, содержащий компоненты в следующем соотношении, мас.%:
Алюминий - 2 - 4
Ванадий - 14 - 20
Хром - 2 - 5
Олово - 2 - 4
Молибден - 0,5 - 3,0
Цирконий - 0,3 - 2,0
Ниобий - 0,01 - 0,40
Титан - Остальное [1]
Недостатком известного сплава является низкая пластичность в холодном состоянии, связанная с ростом микро- и макрозерна при производстве полуфабрикатов путем горячего деформирования.
Задачей изобретения является создание высокопластичного и высокопрочного титанового сплава, допускающего интенсивную холодную деформацию (более 70%) при массовом производстве деталей и конструкций (болты, винты, трубы, листы, лента и проч.).
Поставленная задача достигается тем, что сплав на основе титана, содержащий алюминий, ванадий, хром, олово, молибден, дополнительно содержит железо и бор в следующем соотношении компонентов, мас.%:
Алюминий - 2 - 4
Ванадий - 14 - 20
Хром - 2 - 4
Олово - 2 - 4
Молибден - 0,5 - 3,0
Железо - 1 - 2,5
Бор - 0,005 - 0,020
Титан - Остальное
Легирование небольшим количеством бора сильно измельчает при обязательном содержании 1,0 - 2,5% железа микро- и макрозерно и повышает тем самым пластичность и прочность полуфабрикатов из данного сплава.
Изобретение иллюстрируется следующими примерами. Составы предложенного и известного [2] сплава, приведенные в табл. 1, выплавляли в вакуумно-дуговых печах в два переплава. Допустимое содержание в предложенном сплаве неизбежных примесей следующее, мас.%: кремний до 0,3, кислород до 0,15, углерод до 0,1, азот до 0,05, водород до 0,02. После деформирования и термообработки из заготовок (пруток) изготавливали образцы для проведения механических испытаний.
Предел прочности, предел текучести, относительное сужение и относительное удлинение определялись по ГОСТ 1497-84. Испытание на осадку проводилось по ГОСТ 8817-82.
Термическая обработка предложенного сплава включает ступенчатый отжиг в вакуумных печах или в печах с защитной атмосферой по режиму: нагрев до 780oC, выдержка 1 ч, охлаждение с печью до 480-520oC, выдержка 4-8 ч, охлаждение с печью. Технологическая пластичность при испытании на осадку определялась после отжига в печах с защитной атмосферой по режиму: 780oC, 1 ч, охлаждение с печью.
Как видно из табл. 2, предложенный сплав в термоупрочненном состоянии обладает более высокой прочностью (в среднем более 100 МПа) и особенно важно, что характеристики пластичности также повышаются (относительное сужение и относительное удлинение в среднем в 1,5 раза).
Результаты испытаний на осадку у предложенного сплава выше в среднем на 30%.
Детали и конструкции, изготовленные из предложенного сплава, могут упрочняться без переноса в закалочную среду, т.е. в аргоновакуумных печах (см. табл. 2).
Источники информации
1. Авторское свидетельство N 1007467, кл. С 22 С 14/00, 1981 г.
2. Авторское свидетельство N 1621543, кл. C 22 C 14/00, 1990 г.
название | год | авторы | номер документа |
---|---|---|---|
Сплав на основе титана и изделие, выполненное из него | 2015 |
|
RU2610657C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА И ПРУТКОВАЯ ЗАГОТОВКА ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА | 2017 |
|
RU2690768C1 |
ЧУГУН | 1999 |
|
RU2149914C1 |
КОНСТРУКЦИОННАЯ КРИОГЕННАЯ СТАЛЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2018 |
|
RU2686758C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ С ВЫСОКОЙ ИЗНОСОСТОЙКОСТЬЮ | 2016 |
|
RU2625861C1 |
ВЫСОКОПРОЧНАЯ ВЫСОКОТВЕРДАЯ СТАЛЬ И СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НЕЕ | 2016 |
|
RU2654093C2 |
Хладостойкая высокопрочная сталь | 2020 |
|
RU2746598C1 |
СПОСОБ ПРОИЗВОДСТВА ИНСТРУМЕНТАЛЬНОГО ВЫСОКОПРОЧНОГО ЛИСТОВОГО ПРОКАТА | 2016 |
|
RU2631063C1 |
АУСТЕНИТНАЯ СТАЛЬ | 2003 |
|
RU2233906C1 |
Жаропрочный сплав на основе никеля и изделие, изготовленное из него | 2021 |
|
RU2807233C2 |
Сплав на основе титана применяется в качестве высокопрочного конструкционного материала, подвергающегося упрочняющей термической обработке при ступенчатом отжиге. Задачей изобретения является повышение прочностных и технологических характеристик сплава, увеличение его работоспособности и ресурса. Сплав содержит следующие компоненты, мас.%: алюминий 2 - 4; ванадий 14 - 20; хром 2 - 4; олово 2 - 4; молибден 0,5 - 3,0; железо 1 - 2,5; бор 0,005 - 0,020 и титан - остальное. 2 табл.
Сплав на основе титана, содержащий алюминий, ванадий, хром, олово и молибден, отличающийся тем, что он дополнительно содержит железо и бор при следующем соотношении компонентов, мас.%:
Алюминий - 2 - 4
Ванадий - 14 - 20
Хром - 2 - 4
Олово - 2 - 4
Молибден - 0,5 - 3,0
Железо - 1 - 2,5
Бор - 0,005 - 0,020
Титан - Остальное
СПЛАВ НА ОСНОВЕ ТИТАНА | 1989 |
|
RU1621543C |
СПЛАВ НА ОСНОВЕ ТИТАНА | 1983 |
|
RU1132567C |
SU 4229215, 25.09.1974 | |||
СПОСОБ ПОДУЧЁНЙЯ ХРОМОВОГО КАТАЛИЗАТОРА | 0 |
|
SU202791A1 |
JP 03079736 A, 04.04.1992 | |||
DE 1258105, 04.01.1968 | |||
US 48889170 A, 26.12.1989. |
Авторы
Даты
2000-09-27—Публикация
1999-08-02—Подача